Locking of correlations Debbie Leung U. Waterloo From: Charles Bennett Date: Sept 06, 2001 Subject: Pictures from Huangshan China Dear Friends, Here is.

Slides:



Advertisements
Similar presentations
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Advertisements

Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
Extracting Randomness From Few Independent Sources Boaz Barak, IAS Russell Impagliazzo, UCSD Avi Wigderson, IAS.
Random Quantum Circuits are Unitary Polynomial-Designs Fernando G.S.L. Brandão 1 Aram Harrow 2 Michal Horodecki 3 1.Universidade Federal de Minas Gerais,
Random non-local games Andris Ambainis, Artūrs Bačkurs, Kaspars Balodis, Dmitry Kravchenko, Juris Smotrovs, Madars Virza University of Latvia.
Random non-local games Andris Ambainis, Artūrs Bačkurs, Kaspars Balodis, Dmitry Kravchenko, Juris Smotrovs, Madars Virza University of Latvia.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
Gillat Kol (IAS) joint work with Ran Raz (Weizmann + IAS) Interactive Channel Capacity.
Quantum data locking, enigma machines and entropic uncertainty relations Saikat Guha, Patrick Hayden, Hari Krovi, Seth Lloyd, Cosmo Lupo, Jeffrey H. Shapiro,
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
Short course on quantum computing Andris Ambainis University of Latvia.
Universal Uncertainty Relations Gilad Gour University of Calgary Department of Mathematics and Statistics Gilad Gour University of Calgary Department of.
Chain Rules for Entropy
Quantum Computing MAS 725 Hartmut Klauck NTU
Algorithms Lecture 10 Lecturer: Moni Naor. Linear Programming in Small Dimension Canonical form of linear programming Maximize: c 1 ¢ x 1 + c 2 ¢ x 2.
Measures of Information Hartley defined the first information measure: –H = n log s –n is the length of the message and s is the number of possible values.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
Mutual Information for Image Registration and Feature Selection
A Family of Quantum Protocols Igor Devetak, IBM Aram Harrow, MIT Andreas Winter, Bristol quant-ph/ IEEE Symposium on Information Theory June 28,
1 Chapter 5 A Measure of Information. 2 Outline 5.1 Axioms for the uncertainty measure 5.2 Two Interpretations of the uncertainty function 5.3 Properties.
Distributed Source Coding 教師 : 楊士萱 老師 學生 : 李桐照. Talk OutLine Introduction of DSCIntroduction of DSC Introduction of SWCQIntroduction of SWCQ ConclusionConclusion.
ABCRandom GaussiansConclusion&OutlookIntroductionTypical entanglement IQC 27 June 2007 Randomization workshop, IQC Waterloo Typical entanglement and random.
Gentle tomography and efficient universal data compression Charlie Bennett Aram Harrow Seth Lloyd Caltech IQI Jan 14, 2003.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
Coherent Classical Communication Aram Harrow (MIT) quant-ph/
Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Quantum information and the monogamy of entanglement Aram Harrow (MIT) Brown SUMS March 9, 2013.
Quantum Shannon Theory Patrick Hayden (McGill) 17 July 2005, Q-Logic Meets Q-Info.
Introduction to Quantum Shannon Theory Patrick Hayden (McGill University) 12 February 2007, BIRS Quantum Structures Workshop | 
1 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Richard Cleve QNC 3129 Lecture 18 (2014)
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
ENTROPIC CHARACTERISTICS OF QUANTUM CHANNELS AND THE ADDITIVITY PROBLEM A. S. Holevo Steklov Mathematical Institute, Moscow.
A Few Simple Applications to Cryptography Louis Salvail BRICS, Aarhus University.
Application of quantum universal composability theorem 1. Motivation : e.g. is QKD secure? 2. Tool : universal composability 3. Application 1: composability.
Psyc 235: Introduction to Statistics DON’T FORGET TO SIGN IN FOR CREDIT!
High-entropy random selection protocols Michal Koucký (Institute of Mathematics, Prague) Harry Buhrman, Matthias Christandl, Zvi Lotker, Boaz Patt-Shamir,
Counterexamples to the maximal p -norm multiplicativity conjecture Patrick Hayden (McGill University) || | | N(½)N(½) p C&QIC, Santa Fe 2008.
Entanglement sampling and applications Omar Fawzi (ETH Zürich) Joint work with Frédéric Dupuis (Aarhus University) and Stephanie Wehner (CQT, Singapore)
Quantum Information Theory Patrick Hayden (McGill) 4 August 2005, Canadian Quantum Information Summer School.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
The Classically Enhanced Father Protocol
Christian Schaffner CWI Amsterdam, Netherlands Quantum Cryptography beyond Key Distribution Tropical QKD Waterloo, ON, Canada Wednesday, 16 June 2010.
A generalization of quantum Stein’s Lemma Fernando G.S.L. Brandão and Martin B. Plenio Tohoku University, 13/09/2008.
The question Can we generate provable random numbers? …. ?
Coherent Classical Communication Aram Harrow, MIT Quantum Computing Graduate Research Fellow Objective Objective ApproachStatus Determine.
Unique Games Approximation Amit Weinstein Complexity Seminar, Fall 2006 Based on: “Near Optimal Algorithms for Unique Games" by M. Charikar, K. Makarychev,
On Minimum Reversible Entanglement Generating Sets Fernando G.S.L. Brandão Cambridge 16/11/2009.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Q UANTUM C OMMUNICATION Aditi Sen(De) Harish-Chandra Research Institute, India.
Dualities in quantum information theory Igor Devetak CSI, EE-S, USC quant-ph/
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
Probability I’ve often wondered what were the chances of Dorothy’s house falling directly on the wicked Witch of the East?
Exponential Decay of Correlations Implies Area Law: Single-Shot Techniques Fernando G.S.L. Brandão ETH Zürich Based on joint work with Michał Horodecki.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Imperfectly Shared Randomness
Fernando G.S.L. Brandão and Martin B. Plenio
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Entropic uncertainty relations for anti-commuting observables
Communication Amid Uncertainty
اختر أي شخصية واجعلها تطير!
The Curve Merger (Dvir & Widgerson, 2008)
Quantum Information Theory Introduction
Uncertain Compression
Sublinear Algorihms for Big Data
General Strong Polarization
Decoupling with random diagonal-unitaries
Imperfectly Shared Randomness
Mathematical Foundations of BME
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Presentation transcript:

Locking of correlations Debbie Leung U. Waterloo From: Charles Bennett Date: Sept 06, 2001 Subject: Pictures from Huangshan China Dear Friends, Here is a picture of the famous mountain view called CloudDispelling Pavilion, and the curious lovers' locks, which I used in my talk this morning to illustrate the locking and unlocking of quantum information. Lovers' locks are a custom in China and Japan wherein lovers leave a padlock locked onto the infrastructure at some scenic location, signifying eternal love... Thinking about this custom I wondered if anyone had thought of designing a special lovers’ padlock, without a keyhole or unlocking mechanism. Such a lock would be cheaper to manufacture, and would express greater commitment (no danger of some faithless guy returning at midnight to retrieve the lock and maybe use it with someone else)...

Can we increase a correlation a lot using little comm? Alice Bob :::: State after the k-th message:  AB k 1 2 l Question: is * possible? f( AB l )f( AB k ) * À total message size taking  AB k to  AB l ? Not classically, but yes for some f quantumly. WLOG,  AB 0 uncorrelated. Reasonable normalization: f( AB k ) · total comm up to k-th message Interpreting * : correlation f is existing yet inaccessible in  AB k and the little extra comm unlocks it! f:correlation function

Locking of correlations -- Survey Locking classical mutual information Entropic uncertainty relations Applications: - key uncertainty Extension 1: Locking entanglement App: near-max entanglement deficit of state preparation Extension 2: Multi-round locking Application: separation of capacities DiVincenzo, M. Horodecki, L, Smolin, Terhal Hayden, L, Shor, Winter (Buhrman & Christandl) , Maassen, Uffink 88 Damgaard, Pedersen, Salvail K, M, P Horodecki, Oppenheim DHLST, Bennett, Devetak, Shor, Smolin

Definition: Classical Mutual Information I c Alice Bob  AB MAMA MBMB XAXA XBXB Def: I c ( AB ) := max M A ­ M B I(X A :X B ) X A, X B : random variables x a, x b : outcomes

Special case: accessible information I acc  AB MAMA MBMB X Y Def: I c ( AB ) := max M A ­ M B I(X:Y) Special case:  AB =  x p x |x ih x| ­  x for {|x i } a basis Alice's part is classical, optimal meas M A is along {|x i } Bob is given  x wp p x (call an "ensemble" E:={p x,  x }) M B should maximize Bob's information on "x" Max info =: accessible information of the ensemble I acc (E) X, Y: random variables x, y: outcomes

Locking I c Alice Bob X 2 R {1, ,d}m = log d x (1) Wed e.g. x = exam questions Exam will be on Wed

Locking I c Alice Bob X 2 R {1, ,d} m = log d x (1) Sat U t | i t (2) Wed T 2 R {1, ,r}k = log r Alice’s well-wish: k ¿ m, and Bob learns little about x on Sat Not classically: I(A 1 A 2 :B) - I(A 1 :B) = H(A 1 A 2 ) + H(B) - H(A 1 A 2 B) - [H(A 1 ) + H(B) - H(A 1 B)] Quantumly,... Alice has XT together Each xt occurs with prob 1/(rd),  xt = U t |x ih x|U t y · H(A 1 A 2 ) - H(A 1 ) + H(A 1 B) - H(A 1 A 2 B) · H(A 2 ) + 0

Locking I c Alice Bob X 2 R {1, ,d} m = log d x (1) Sat U t | i t (2) Wed T 2 R {1, ,r}k = log r k Scheme r=2, U 1 =I, U 2 =FT r=(logd) 3, U t 2 R Haar r=(logd) 5, U t 2 R Haar I acc (w/o t) = ½ logd ·  logd + 3 const I acc (given t) log d + 1 log d + 3 loglog d log d + 5 loglog d Difference = ½ log d ¸ (1-) logd ¸ logd - const d large : logd ¸ O[(1/) log(1/)] Set of {U t } picked iid & preagreed upon t chosen randomly by Alice during the run

Why is I acc (w/o t) bounded? Alice Bob X 2 R {1, ,d} m = log d x (1) Sat U t | i T 2 R {1, ,r}k = log r I c ( AB ) = I acc ({1/rd, U t |x i }) WLOG, M B ={ j | j ih  j |} ( j  j =d) (J:= rv for outcome) I acc = I(J:XT) = H(J) - H(J|XT) = -  j  j /d log  j /d +(1/rd)  xt  j  j | h  j |U t |x i | 2 log  j | h  j |U t |x i | 2 = log d +  j ( j /d) 1/r  t  x | h  j |U t |x i | 2 log | h  j |U t |x i | 2 prob(j|xt) =  j | h  j |U t |x i | 2 prob(j) =  j /d

Why is I c ( AB Sat ) bounded? I c ( AB ) = I acc ({1/rd, U t |x i }) WLOG, M B ={ j | j ih  j |} I c ( AB ) = max M B [log d +  j  j /d ¢ 1/r  xt | h  j |U t |x i | 2 log | h  j |U t |x i | 2 ] · max | i [log d – 1/r  t (-) x | h |U t |x i | 2 log | h |U t |x i | 2 ] = log d – min | i 1/r  t H t Goal: Prove EUR’s min | i 1/r  t H t ¸ then I c ( AB ) · log d -  algebra distribution convexity Measure | i along {U t |x i } H t = entropy of outcome “x” Average uncertainty of outcome when measuring | i along a basis randomly chosen from a set Any lower bound ( 8 ) is called “entropy uncertainty relation” (EUR) for the set of basis.

Proving min | i 1/r  t H t ¸ so that I c ( AB ) · log d -  H t = entropy of outcome “x” when measuring | i along {U t |x i } k Scheme r=2, U 1 =I, U 2 =FT r=(logd) 3, U t 2 R Haar r=(logd) 5, U t 2 R Haar I c ( AB Sat ) · ½ logd ·  logd + 3 const I c ( AB Wed ) logd + 1 logd + 3 loglogd logd + 5 loglogd I c ¸ ½ log d ¸ (1-) logd ¸ logd - const

Proving min | i 1/r  t H t ¸ so that I c ( AB ) · log d -  H t = entropy of outcome “x” when measuring | i along {U t |x i } For scheme 1: min | i 1/r  t H t ¸ ½ logd For scheme 2: min | i 1/r  t H t ¸ (1-) logd - 3 For scheme 3: min | i 1/r  t H t ¸ logd - const k Scheme r=2, U 1 =I, U 2 =FT r=(logd) 3, U t 2 R Haar r=(logd) 5, U t 2 R Haar I c ( AB Sat ) · ½ logd ·  logd + 3 const I c ( AB Wed ) logd + 1 logd + 3 loglogd logd + 5 loglogd I c ¸ ½ logd ¸ (1-) logd ¸ logd - const for log d ¸ const/ log(20/)

Proving min | i 1/r  t H t ¸ so that I c ( AB ) · log d -  H t| i = entropy of outcome “x” when measuring | i along {U t |x i } Pf ideas for: min | i 1/r  t H t | i ¸ (1-) logd + 3 Pick 1 random state | i - Levy’s Lemma: Pr[ H | i < logd 2 ] · exp( » d/(logd) 2 ) - Chernoff bound: Pr[ 1/r  t H t| i · (1-/2)(logd -2) ] · exp(- »  r d/(logd) 2 ) Union bound for N | i ’s - Pr[ min | i 1/r  t H t| i · (1-/2)(logd -2) ] · N exp(- »  r d/(logd) 2 ) - Take N=(10/) 2d, {| i } s.t. any | i is /2 close to one | i For all | i - Continuity: || | ih || ih | || tr · /2 ) | H t| i – H t| i | · /2 logd Pr[ min | i 1/r  t H t| i · (1-)(logd -3) ] · (10/) 2d exp(- »  r d/(logd) 2 ) details needed

Proving min | i 1/r  t H t ¸ so that I c ( AB ) · logd -  H t| i = entropy of outcome “x” when measuring | i along {U t |x i } Pf ideas for: min | i 1/r  t H t | i ¸ (1-) logd Pr[ min | i 1/r  t H t| i · (1-)(log d -3) ] · (10/) 2d exp(- »  r d/(log d) 2 ) if Pr <  1, green statement is sometimes false, and the black statement is sometimes true. i.e. 9 {U t } s.t. the claimed EUR holds r » 1/ (log d) 2 log(1/) sufficient which r = (log d) 3 OK for  const r = (log d) 5 OK for  = 1/log d

Punchline: Alice Bob X 2 R {1, ,d} m = log d x (1) Sat U t | i T 2 R {1, ,r}k = log r r=2, U 1 =I, U 2 =FT r=(logd) 3, U t 2 R Haar r=(logd) 5, U t 2 R Haar I c ( AB Sat ) · ½ logd ·  logd + 3 const