Multiple Ion Acceleration at Martian Bow Shock M. Yamauchi 1, Y. Futaana 1, A. Fedorov 2, R.A. Frahm 3, E. Dubinin 4, R. Lundin 1, J.-A. Sauvaud 2, J.D.

Slides:



Advertisements
Similar presentations
Mass composition of the escaping plasma at Mars Ella Carlsson IRF Kiruna Supervisors: Professor Sverker Fredriksson, LTU Professor Stas Barabash, IRF Ella.
Advertisements

THREE-DIMENSIONAL ANISOTROPIC TRANSPORT OF SOLAR ENERGETIC PARTICLES IN THE INNER HELIOSPHERE CRISM- 2011, Montpellier, 27 June – 1 July, Collaborators:
Lundstedt (IRF-Lund). Narayan (Stockholm-U) Kanao (ISAS, Japan) The effect of the crustal magnetic field on the distribution of the ion number density.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
Session A Wrap Up. He Abundance J. Kasper Helium abundance variation over the solar cycle, latitude and with solar wind speed Slow solar wind appears.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
Sudden appearance of sub- keV structured ions in the inner magnetosphere within one hour: drift simulation M. Yamauchi 1, Y. Ebihara 2, I. Dandouras 3,
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Investigation of the source region of ionospheric oxygen outflow in the cusp using multi-spacecraft observations by CIS onboard Cluster COSPAR, 2002, Houston,
On the New Classifications of Solar Coronal Mass Ejections based on the Observations by LASCO/SOHO Virendra K. Verma, Uttrakhand Space Application Center,
Shock Wave Related Plasma Processes
Scalar and Vector Fields
Physics of fusion power Lecture 7: particle motion.
Cusp O+ H+ e- "SPI" event #1 event #2 MLT energy ratio = 15~20 O+ H+ 68°CGLat66°CGLat 63°CGLat #1) Mono-energetic ion injection with O+ faster.
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005.
IMF direction derived from cycloid-like ion distributions observed by Mars Express M. Yamauchi, Y. Futaana, R. Lundin, S. Barabash, M. Holmström (IRF-Kiruna,
CLUSTER Electric Field Measurements in the Magnetotail O. Marghitu (1, 3), M. Hamrin (2), B.Klecker (3), M. André (4), L. Kistler (5), H. Vaith (3), H.
International Conference on Comparative Planetology: Venus - Earth - Mars ESTEC, Noordwijk, The Netherlands, Thursday 14 May :10:00, Abstract #
ASEN 5335 Aerospace Environments -- Radiation Belts1 The Radiation Belts A radiation belt is a population of energetic particles stably-trapped by the.
Hot He + events in the inner magnetosphere observed by Cluster M. Yamauchi 1, I. Dandouras 2, H. Reme 2, H. Nilsson 1 (1) Swedish Institute of Space Physics.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
PAPER I. ENA DATA ANALYSIS RESULTS. The Imager for Magnetopause-to- Aurora Global Exploration (IMAGE) missionis the first NASA Mid-size Explorer (MIDEX)
Suprathermal Tails in Solar Wind Oxygen and Iron Mark Popecki University of New Hampshire STEREO SWG 11/2007.
Oxygen Injection Events observed by Freja Satellite M. Yamauchi 1, L. Eliasson 1, H. Nilsson 1, R. Lundin 1, and O. Norberg 2 1.Swedish Institute of Space.
Equatorial signatures of an auroral bulge and a filamentation/demarcation of a transpolar arc observed by Cluster M. Yamauchi 1, I. Sandahl 1, R. Lundin.
M. Yamauchi 1, H. Nilsson 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, Y. Ebihara 4 (1) Swedish Institute of Space Physics (IRF), Kiruna, Sweden (2) CNRS.
Escaping ions over polar cap. Inner magnetosphere, Bow shock/Foreshock, and Ancient magnetosphere.
Composition and spectral properties of the 1 AU quiet- time suprathermal ion population during solar cycle23 M Al-Dayeh, M I Desai, J R Dwyer, H K Rassoul,
Need for a mission to understand the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team (1) Swedish Institute.
Cosmic Rays2 The Origin of Cosmic Rays and Geomagnetic Effects.
1 Hybrid Simulations of the Callisto - Magnetosphere Interaction Stas Barabash and Mats Holmström Swedish Institute of Space Physics, Kiruna, Sweden.
Observation of high kinetic energy density jets in the Earth’s magnetosheath E. Amata 1, S. P. Savin 2, R. Treuman 3, G. Consolini 1, D. Ambrosino, M.F.
Group A: S. Bale(Tutor), B. Engavale, W.L. Shi, W.L. Teh, L. Xie, L. Yang, and X.G. Zhang 13,May rd COSPAR Capacity Building Workshop3 rd COSPAR.
Understanding the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team EANA-2012 (P4.30, ) (1) Swedish.
IMF derivation from Pickup Ions observed by ASPERA UT UT UT M. Yamauchi B ion ion motion in.
Analysis of Suprathermal Events Observed by STEREO/PLASTIC with a Focus on Upstream Events STEREO SWG - 20 Meredith, NH October 27-29, 2009 Josh Barry,
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Stas Barabash, SSPT, Kiruna Swedish space physics workshop. Uppsala, February 26-27, 2009 Chandrayaan (Indian Moon mission) S/C DPU (SPL/VSSC) SAS (IRF/ISAS/UBe)
A shock is a discontinuity separating two different regimes in a continuous media. –Shocks form when velocities exceed the signal speed in the medium.
THREE-DIMENSIONAL ANISOTROPIC TRANSPORT SIMULATIONS: A PARAMETER STUDY FOR THE INTERPRETATION OF MULTI-SPACECRAFT SOLAR ENERGETIC PARTICLE OBSERVATIONS.
Morphology of Inner Magnetospheric low- energy ions M. Yamauchi 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, L.M. Kister 4, F. Mazouz 5, Y. Ebihara 6 (1)
MULTI-INSTRUMENT STUDY OF THE ENERGY STEP STRUCTURES OF O + AND H + IONS IN THE CUSP AND POLAR CAP REGIONS Yulia V. Bogdanova, Berndt Klecker and CIS TEAM.
SEPT/STEREO Observations of Upstream Particle Events: Almost Monoenergetic Ion Beams A. Klassen, R. Gomez-Herrero, R. Mueller-Mellin and SEPT Team, G.
24 January, 20011st NOZOMI_MEX Science Workshop, Jan, 2001 R. Lundin, M. Yamauchi, and H. Borg, Swedish Institute of Space Physics H. Hayakawa, M.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Foreshock and planetary size: A Venus-Mars comparison M. Yamauchi, Y. Futaana, R. Lundin, S. Barabash, M. Holmstrom (IRF, Kiruna, Sweden) A. Fedorov, J.-A.
Techniques for mass resolution improvement achieved by typical plasma analyzers: Modeling and simulations 1 G. Nicolaou, 1 M. Yamauchi, 1 M. Wieser, 1.
R. Maggiolo 1, M. Echim 1,2, D. Fontaine 3, A. Teste 4, C. Jacquey 5 1 Belgian Institute for Space Aeronomy (IASB-BIRA); 2 Institute.
Vectors Chapter 2.  Scalars and vectors : A scalar quantity: is a quantity that has magnitude only. Mass, time, speed, distance, pressure, Temperature.
Mass-loading effect in the exterior cusp and plasma mantle
M. Yamauchi1, I. Dandouras2, H. Reme2,
Ion Pickup Phenomenon upstream of Mars observed by ASPERA 3
Oxygen Injection Events observed by Freja Satellite
M. Yamauchi1, H. Nilsson1, R. Lundin1, I. Dandouras2, H. Reme2, H
The Wakes and Magnetotails of Venus and Mars
1G. Nicolaou, 1M. Yamauchi, 1,2H. Nilsson, 1M. Wieser, 3A. Fedorov, 1D
Mars, Venus, The Moon, and Jovian/Saturnian satellites
Observations of Electrons Accelerated Upwards
M. Yamauchi1, Y. Futaana1, R. Lundin1, S. Barabash1, M. Wieser1, A
Multiple Ion Acceleration at Martian Bow Shock
Multiple Ion Acceleration at Martian Bow Shock
Chapter 29 Problems Problems 7, 9, 12, 30, 37, 41.
solar wind – bow shock - magnetosheath
Infrasonic detection of meteoroid entries
Volume 108, Issue 10, Pages (May 2015)
Volume 103, Issue 5, Pages (September 2012)
Mars, Venus, The Moon, and Jovian/Saturnian satellites
by W. R. Binns, M. H. Israel, E. R. Christian, A. C. Cummings, G. A
Radar Soundings of the Ionosphere of Mars
Presentation transcript:

Multiple Ion Acceleration at Martian Bow Shock M. Yamauchi 1, Y. Futaana 1, A. Fedorov 2, R.A. Frahm 3, E. Dubinin 4, R. Lundin 1, J.-A. Sauvaud 2, J.D. Winningham 3, S. Barabash 1, and M. Holmström 1 EGU (XY673, ) (1) Swedish Institute of Space Physics, Kiruna, Sweden (2) CNRS and U. Toulouse, IRAP, Toulouse, France (3) Southwest Research Institute, San Antonio, Texas, USA (4) Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany

The ion mass analyzer (IMA) on board Mars Express (MEX) revealed multi-bundled energy structure of ions within a distance of a proton gyroradius from the Martian bow shock. By using pick-up ions of exospheric origin to determine the local magnetic field orientation from thier circular trajectory in velocity space, the velocity distribution of these multi-bundled structure is obtained. Figure 1 shows an example of observation. The velocity distribution is compared with specularly reflected solar wind and once- reflected solar wind that returns back to the bow shock after gyration (injection velocity is taken from observation). Seven traversals (Figure 2) with three types of the bow shock configurations (Figures 3 and 4) are examined. The result (V  -V // ) and V  -V  plots) are shown in Figure 5. Calculated V // is also compared with the de Hoffman-Teller velocity to examine weather the reflected ions escape after second reflection. Analyses

Figure 1 (a) Energy-time spectrograms near the bow shock (BS). The nearly 3- min cycle in the proton data is due to the scanning cycle of entrance direction from -45° to +45°. Solar wind protons (SW) are seen at around 0.7 keV. (b) One of 3-min scans is expanded for different azimuthal (f) directions, and (c) plotted in the  -// projection (upper panel) and  -  projection (lower panel). Identified ion populations in (b) are marked by different symbols (legend at right) in (c) using the same colors as (b). The orange and red arrows are calculated jumps by the first and second specular reflection. Gyration trajectories of these reflected ions are given by orange and red dashed circles/lines. BSSW n: BS normal direction.

Figure 3 Three types of bow shocks: quasi-parallel (QL) shock, quasi-perpendicular shock with its specular reflection direction of the solar wind more along than perpendicular with respect to the magnetic field (FS), and the other quasi-perpendicular shock (QT) Figure 2: examined traversals

Figure 4 Other examples with multi-bundled structure BS

Figure 5a QTFSQLQT  acceleration oblique acceleration // acceleration escape

Figure 5b QTQLFSQT  & // acceleration  acceleration oblique acceleration // acceleration escape

Summary New classification (Fig 3) is effective when the gyroradius is comparable to the bow shock size at sub-solar point In all cases, the second branch marked by orange colors is consistent with specular reflections of the solar wind at the bow shock for both parallel and perpendicular directions. In all cases with multiple ring observations, the third branch marked by red colors is consistent with specular reflections of the second reflection at the bow shock for both parallel and perpendicular directions. All events with parallel acceleration (#3a, #6b, #7a) correspond to escape beyond the uncertainty after the second reflection. The events with perpendicular acceleration correspond to trapping, although the uncertainty is large for these cases.