宇宙微波背景辐射与 CPT 破坏 李明哲 南京大学物理学院 南大 - 紫台 粒子 - 核 - 宇宙学联合研究中心 2010.4.18 南昌 中国高能物理学会.

Slides:



Advertisements
Similar presentations
An Approach to Testing Dark Energy by Observations Collaborators : Chien-Wen Chen Phys, NTU Pisin Chen LeCosPA, NTU Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心.
Advertisements

Test CPT with CMB Mingzhe Li Department of Physics, Nanjing University May 10, 2011 IHEP Beijing.
Testing CPT with CMB 李明哲 University of Bielefeld 2008 年 4 月 28 日.
Cosmological CPT Violation, Baryo/leptogenesis and CMB Polarization Mingzhe Li Nanjing University.
Dark energy and its connections to neutrino, baryo/leptogenesis and dark matter Xinmin Zhang Institute of High Energy Physics Beijing Outline of the talk.
Recent progress on the study of Dark Energy Xinmin Zhang Institute of high energy physics 1) Brief review on the models of dark energy, especially on Quintom.
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
The Physics of the cosmic microwave background Bonn, August 31, 2005 Ruth Durrer Départment de physique théorique, Université de Genève.
Is the Universe homogeneous and isotropic? Marc Kamionkowski (Caltech) Tsvi-fest, 17 December 2009 Statistically.
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
José Beltrán and A. L. Maroto Dpto. Física teórica I, Universidad Complutense de Madrid XXXI Reunión Bienal de Física Granada, 11 de Septiembre de 2007.
暴涨模型及观测检验 郭宗宽 中科院理论物理所 中国科技大学交叉学科理论研究中心 2011 年 6 月 30 日.
Dark Energy Perturbations 李明哲 南京大学物理学院 中国科技大学交叉学科理论研究中心 合肥.
Dynamical Dark Energy and Its Coupling to Matter Kin-Wang Ng ( 吳建宏 ) ASIoP ( 中央研究院物理所 ) & ASIAA ( 中央研究院天文所 ), Taipei NTHU Oct 4, 2007 Thanks to D.-S. Lee(
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
CMB as a physics laboratory
Constraints on the Primordial Magnetic Field and Neutrino Mass from the CMB Polarization and Power Spectra G. J. Mathews - University of Notre Dame D..
暗能量和宇宙学 CPT 破坏 李明哲 南京大学物理系 粒子 - 核 - 宇宙学联合研究中心. Outline 1, Brief review on dark energy models, cosmological constant or dynamical dark energy, current.
Non-Gaussianities of Single Field Inflation with Non-minimal Coupling Taotao Qiu Based on paper: arXiv: [Hep-th] (collaborated with.
Based on Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016 Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016.
CMB Polarization Generated by Primordial Gravitational Waves - Analytical Solutions Alexander Polnarev Queen Mary, University of London MG12, Paris, 13.
Cosmology, University of Bologna – May Cosmology: Polarization of the Cosmic Microwave Background Steven T. Myers University of Bologna and the.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Effective field theory approach to modified gravity with applications to inflation and dark energy Shinji Tsujikawa Hot Topics in General Relativity And.
1 Circular Polarization of Gravitational Waves in String Cosmology MIAMI, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Horava-Lifshitz 重力理論とはなにか? 早田次郎 京都大学理学研究科 大阪市立大学セミナー T.Takahashi & J.Soda, arXiv: [hep-th], to appear in Phys.Rev.Lett. Ref. Chiral Primordial.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
The anisotropic inflation and its imprints on the CMB Kyoto University Masaaki WATANABE Ref: MW, Sugumi Kanno, and Jiro Soda [1] 2009, arXiv:
Quintom Cosmology Tao-Tao Qiu & Yi-Fu Cai, IHEP (邱涛涛、蔡一夫, 中科院高能所) ( “ 精灵 ” 宇宙学)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Primordial black hole formation in an axion-like curvaton model Primordial black hole formation in an axion-like curvaton model 北嶋直弥 東京大学 / 宇宙線研究所 M. Kawasaki,
PREDRAG JOVANOVIĆ AND LUKA Č. POPOVIĆ ASTRONOMICAL OBSERVATORY BELGRADE, SERBIA Gravitational Lensing Statistics and Cosmology.
Dark Energy, Cosmological CPT Violation and Baryo/Leptogenesis Xinmin Zhang Institute of high energy physics 1) Brief review on the dark energy study;
中国科技大学交叉中心 吴普训 宁波大学理学院 Distance duality relation and cosmic opacity Collaborators: Zhengxiang Li, Jun Chen, Hongwei Yu Li, Wu and Yu, APJL.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Recent Progress on Dark Energy Study Xinmin Zhang IHEP
中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS Constraints on the cross-section of dark matter annihilation from Fermi observation of M31 Zhengwei Li Payload.
1 Gauge-singlet dark matter in the left-right symmetric model with spontaneous CP violation 郭万磊 中国科学院理论物理研究所 CPS 2008, JiNan , W.L. Guo, L.M.
2010/09/27 Tokyo Univ. f(R) Modified Gravity Cosmological & Solar-System Tests Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology.
Interacting Dark Energy Xinmin Zhang Institute of High Energy Physics Beijing Outline of the talk I. Current constraints on Dark Energy a. Constraints.
Probing Dark Energy Birefringence by CMB polarization
1 Circular Polarization of Gravitational Waves in String Cosmology KITPC, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
Three theoretical issues in physical cosmology I. Nonlinear clustering II. Dark matter III. Dark energy J. Hwang (KNU), H. Noh (KASI)
The Cosmic Microwave Background
CMB constraints on Lorentz violation in the neutrino sector Zong-Kuan Guo (ITP, CAS) Weihai August 13, 2012.
Dark Energy and its connections to Neutrinos, Baryogenesis and Dark Matter Xinmin Zhang Institute of High Energy Physics, Beijing P. R. China.
Determining cosmological parameters with the latest observational data Hong Li TPCSF/IHEP
+ Quintessence and Gravitational Waves Peng Zhou, Daniel Chung UW-Madison Physics Dept.
Determination of cosmological parameters Gong-Bo Zhao, Jun-Qing Xia, Bo Feng, Hong Li Xinmin Zhang IHEP, Beijing
Cheng Zhao Supervisor: Charling Tao
@ 2012 Miniworkshop for String theory and Cosmology Dec. 01st Seokcheon Lee (KIAS)
Quantum Gravity: Infinities, Loops, and Strings Vsevolod Ivanov2014 What is THE question (and why do we care)? A quantum history The trouble with gravity.
Cosmological constraints from μE cross correlations
Observational Constraints on the Running Vacuum Model
Finsler引力研究现状 重庆大学 李昕 2016年8月 合肥.
Interacting Dark Energy
Recent status of dark energy and beyond
Dark Energy of the Universe
Peng Wang Sichuan University
Notes on non-minimally derivative coupling
Shintaro Nakamura (Tokyo University of Science)
宇宙微波背景辐射与早期宇宙物理 郭宗宽(中科院理论物理研究所) 南开大学物理学院 2012年3月16日.
A Measurement of CMB Polarization with QUaD
暴涨模型及观测检验 郭宗宽 中科院理论物理所 中国科技大学交叉学科理论研究中心 2011年6月30日.
Determining cosmological parameters with current observational data
李明哲 南京大学物理系 粒子-核-宇宙学联合研究中心
Presentation transcript:

宇宙微波背景辐射与 CPT 破坏 李明哲 南京大学物理学院 南大 - 紫台 粒子 - 核 - 宇宙学联合研究中心 南昌 中国高能物理学会

Outline Brief review on CMB polarization How to test CPT violation with CMB polarization Current status Explicit and spontaneous CPT violations Conclusions

Brief Review on CMB Polarization

Temperature fluctuation at LSS

Temperature Angular Power Spectrum

Generating CMB polarization at LSS

Both density perturbation (scalar perturbation) and gravity waves (tensor perturbation) can generate quadrupole anisotropies for the radiation Scalar perturbation generates T and E-polarization Tensor perturbation generates T, E- and B-polarizations Polarizations experience modifications during the propagation from LSS to the observer (reionization, weak lensing, …) Here I report the change by CPT violation

Polarization and Stokes parameters At the inertial frame I→ intensity Q&U→ linear polarization V→ circular polarization The polarization angle: Spin 2

How To Test CPT Violation With CMB Polarization Lorentz and CPT are violated by the Chern-Simons term The action integral is gauge invariant if the external field is constant or maybe the dark energy M.Li, X.Wang, B.Feng, X.Zhang, PRD (2002);Li, Zhang, PLB (2003) or Ricci scalar H.Li, M.Li, X.Zhang, PRD (2004); B.Feng, H.Li, M.Li, X.Zhang, PLB(2005); M.Li, J.Xia, H.Li, X. Zhang, PLB(2007)

Geometric Optics Approximation Equations of motion

Basic equations: M.Li, X.Zhang, PRD(2008)

CPT violation induced the rotation of the polarization direction Rotation angle only depends on the difference of dark energy field at the source and the observer’s positions. Rotation angle characterizes the CPT-violating effect!

In the case of homogeneous

Without CPT violation, the correlations of TB and EB vanish Bo Feng, Mingzhe Li, Junqing Xia, Xuelei Chen, Xinmin Zhang, PRL(2006)

Current Status CMBPol can detect Bo Feng, Mingzhe Li, Hong Li, Xinmin Zhang, PLB(2005), hep-ph/ Simulation result: WMAP3+BOOMERanG03 Bo Feng, Mingzhe Li, Junqing Xia, Xuelei Chen, Xinmin Zhang, PRL(2006)

4) 5) 7) J.Q.Xia et al., A&A (2008) 6)J.Q.Xia et al., ApJL(2008) Komatsu et al., arXiv: , ApJS(2009) J.Q.Xia et al., A&A (2008) P.Cabella, Natoli & Silk, PRD (2007) 1) WMAP Group 3) QUaD Group M.L. Brown et al., arXiv: , ApJ(2009) Komatsu et al., arXiv: ) WMAP Group

WMAP5+B03+BICEP WMAP5+B03+BICEP+QUaD Jun-Qing Xia, Hong Li & Xinmin Zhang, arXiv: , PLB (2010)

Explicit and spontaneous CPT violations Explicit: Gravitational field equation Einstein tensor symmetric and Inconsistent! Mingzhe Li, Yi-Fu Cai, Xiulian Wang & Xinmin Zhang, PLB(2009)

Constraint

TB and EB on RHS are due to CPT violation in gravity causes different spectra for left and right handed tensor perturbations and generates TB and EB of CMB at LSS.

Spontaneous: Not necessary to modify the gravity! Rotation angle depends on time as well as space Equivalence principle We need to consider its gravitational perturbation

Spatial dependent rotation angle: Mingzhe Li & Xinmin Zhang, PRD(2008)

Constraining a spatially dependent rotation of the Cosmic Microwave Background Polarization. Yadav, Biswas, Su, Zaldarriaga,PRD(2009) How to De-Rotate the Cosmic Microwave Background Polarization. M. Kamionkowski, PRL(2009) Detection of Spatially Dependent Rotation Angle De-Rotation of the Cosmic Microwave Background Polarization: Full-Sky Formalism. V. Gluscevic, M. Kamionkowski & A. Cooray, PRD(2009)

Conclusion The high precision CMB polarization experiments are important ways to test CPT. Currently big process made along this direction. Explicit CPT breaking models need to modify the gravity. For spontaneous CPT breaking, the rotation angle is spatial dependent, we need to consider its gravitational perturbation.

Thanks!