Mechanics of an atomic crank of 1,6 Linked Polysaccharides by AFM and SMD Calculations Gwangrog Lee Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC, Please look at slide notes
Adhesive interactions
Materials and Methods Polysaccharides: Pustulan (1→6-linked β-D-glucose). Single Molecule Force Spectroscopy by AFM. 1-5 Steered Molecular Dynamics simulations: NAMD and CHARMM (CSFF). 6-7
AFM experiment
SMD Simulation Potential being applied to the system: Force Sensor (cantilever)
Demo of SMD simulation using NAMD
Freely jointed chain with segment elasticity x p F LcLc Worm-like chain
AFM recordings obtained on individual pustulan molecules of various lengths. Pustulan -1, O6O6 O5O5 t1t1 t3t3 t2t2 O1O1 O 6 -O 1 : Glycosidic linkage C 1 -O 1 : Glycosidic bond Atomic lever O 6 -C 6 : Aglycone bond Atomic crank t 1 : Dihedral angle of rotamer t 2, t 3 : Dihedral angle for monitoring chair-boat transition
Table 1. Ab initio calculations of the O 6 -O 1 distance in the rotamers of β-D-glucose using the B3LYP/ G** method. Rotamerβ- D- Glucose ω/ω/ O 1 O 6 /Ǻ 4 C 1 gt C 1 gg C 1 tg
Force-spectrograms of 20 different pustulan molecules are normalized at the common force (1400 pN) and superimposed. O6O6 C6C6 C5C5 O5O5 tg: gg: gt: O1O1 Definition of rotamer gt, gg, and tg rotamer of β-D- glucopyranose Cellulose ( blue line ) Pustulan ( black line )
5ns water-simulation and normalized force- spectrograms with a scale of monomer. tg +167° gt +56° 4.97 Å6.27 Å 4 C 1gt 4 C 1tg Normalized Extension per Ring/Å
A comparison of pulling speeds Normalized Extension per Ring/Å Green: 5ns Simulation Blue: 200ns Simulation Red: 1micros Simulation
A comparison between force-extension curves of pustulan obtained by AFM and by SMD simulations of 10 rings for 1 micro seconds. Normalized Extension per Ring/Å B C Dihedral Angles/º Ring 4 Ring 5 A tg +166°gt +69° tg -174°gg -75° R5 R
ns ns -70° 158° 5.30 Å 5.94 Å Time/ns O 1 -O 6 /Å C A B Dihedral angles Analysis of the one microsecond SMD trajectory of ring #4 reveals thermally driven and force driven conformational transitions between gg, gt, and tg states.
4.93Å 6.29Å F=2900 pNF=0 A comparison of the works undergone under stretching condition of each polymer. Cellulose ( blue line ) Pustulan ( red line ) Insert The initial and final structures of pyranose ring in pustulan 5.7 kcal/mol
Conclusion The hookean elasticity of pustulan is generated by forced gt→tg and gg→tg rotations about the C 5 -C 6 bond. The work to rotate the atomic crank (O 6 -C 6 ) about the C 6 -C 5 bond is 5.7 kcal/mol (W rot = W pust - W cell ).
Reference 1.Rief, M., Oesterhelt, F., Heymann, B., and Gaub, H. E. (1997). Science 275, Marszalek, P. E., Oberhauser, A. F., Pang, Y.-P., and Fernandez, J. M. (1998). Nature 396, Marszalek, P. E., Pang, Y. P., Li, H., Yazal, J. E., Oberhauser, A. F., and Fernandez, J. M. (1999). PNAS 96, Marszalek, P.E., Li, H. & Fernandez, J.M. (2001). Fingerprinting polysaccharides with single molecule AFM. Nat. Biotech. 19, Marszalek, P.E., Li, H., Oberhauser, A.F. & Fernandez, J.M. (2002). PNAS 99, Kuttel, M., Brady, J.W. & Naidoo, K.J. (2002) J. Comput. Chem. 23, Humphrey, W., Dalke, A., & Schulten, K. J. Mol. Graphics, 14, (1996). 8.Kirschner, N. Karl & Woods, R.J. (2001) PNAS 98,