Doc.: IEEE 802.11-00/392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 1 OFDM System Performance Karen Halford, Steve Halford.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /389r1 Submission November 2000 Steve Halford and Mark WebsterSlide 1 Overview of OFDM for a High Rate Extension Steve Halford Mark.
Advertisements

Doc: IEEE r0 Submission May 2001 S. Halford, et al Intersil Corporation Slide 1 Minor Technical Change for TGg Steve Halford Mark Webster Jim.
OFDM Transmission over Wideband Channel
Suggested PA Model for HRb
Doc.: IEEE /286r0 Submission May 2001 Shoemake and Batra, TI Range vs. Rate Comparison of Remaining IEEE g Proposals: PBCC and CCK-OFDM.
Anatomy of Radio LAN Onno W. Purbo
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
– Wireless PHY and MAC Stallings Types of Infrared FHSS (frequency hopping spread spectrum) DSSS (direct sequence.
Doc.: IEEE /282r1 Submission September 2000 S. Halford, K. Halford, and M. WebsterSlide 1 Evaluating the Performance of HRb Proposals in the Presence.
Doc.: IEEE / k Submission September 2003 Brian Johnson, Nortel Networks a Performance Over Various Channels 9 September 2003 Presenter:
Submission May, 2000 Doc: IEEE / 086 Steven Gray, Nokia Slide Brief Overview of Information Theory and Channel Coding Steven D. Gray 1.
Submission doc.: IEEE /0333r0 March 2015 Oghenekome Oteri (InterDigital)Slide 1 Throughput Comparison of Some Multi-user Schemes in ax Date:
1 Enhancement of Wi-Fi Communication Systems through Symbol Shaping and Interference Mitigation Presented by Tanim M. Taher Date: Monday, November 26 th,
Doc.: IEEE /0099 Submission Payload Symbol Size for 11ax January 2015 Ron Porat, BroadcomSlide 1 Date: Authors:
Doc.: IEEE /396 Submission November 2000 S. Halford, P. Chiuchiolo, G. Dooley, and M. WebsterSlide 1 Implementation and Complexity Issues for.
Doc.: IEEE /206 Submission Slide 1 July 2000 Loraine, Micro Linear Corp. HRb performance requirements: PHY Overhead & Data Rate July 2000 Jerry.
Doc.: IEEE /436r0 Submission July 2001 S. Halford, et al IntersilSlide 1 CCK-OFDM Normative Text Summary Steve Halford Mark Webster Jim Zyren.
Doc.: IEEE /102r0 Submission January 2002 M. Webster, et al IntersilSlide 1 Proposed Change to CCK-OFDM Signal Extension Mark Webster Steve Halford.
Doc.: IEEE /0075r0 Submission January 2004 H. Sampath, PhD, Marvell SemiconductorSlide 1 Pros and Cons of Circular Delay Diversity Scheme for.
Doc.: n-proposal-statistical-channel-error-model.ppt Submission Jan 2004 UCLA - STMicroelectronics, Inc.Slide 1 Proposal for Statistical.
Doc.: IEEE /1484r1 Submission November 2011 Hongyuan Zhang, et. Al.Slide 1 11ah Data Transmission Flow Date: Authors:
Doc.: IEEE /313 Submission September 2000 Matthew B. Shoemake, Texas InstrumentsSlide 1 High Rate b Study Group Report September 20, 2000.
IEEE802.11a 指導教授 : 高永安 學生 : 陳穎俊. PLCP preamble.
Dec doc:IEEE b Slide 1 Submission Liang Li, WXZJ Inc. Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Doc.: IEEE /089 Submission January 2002 Steve Halford, IntersilSlide 1 Maximum Received Power for g Steve Halford Mark Webster.
Doc.: IEEE /1032r1 Submission September 2004 Hiroyuki Nakase, Tohoku Univ.Slide 1 Enhanced MAC proposal for high throughput. Tohoku University.
Doc.: IEEE /138r0 Submission March 2001 Mauri Honkanen, NokiaSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
802.11b PHY Wireless LANs Page 1 of 23 IEEE b WLAN Physical Layer Svetozar Broussev 16-Feb-2005.
Doc.: IEEE /0075r1 Submission January 2004 H. Sampath, R. Narasimhan, Marvell SemiconductorSlide 1 Advantages and Drawbacks of Circular Delay.
Doc.: IEEE m SubmissionSlide 1 September 2012 Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs) Submission.
Doc.: IEEE /536r0 Submission September 2001 A. Soomro and S. Choi, Philips Research, USASlide 1 Proposal to Add Link Margin Field in IEEE h.
Doc.: IEEE /1191r0 Submission September 2014 MAC calibration results Date: Authors: Zhou Lan (Huawei Technology)Slide 1.
Doc.: IEEE /072 Submission May 2000 Mark Webster and Karen Halford, Intersil Corporation Slide 1 Market Acceptability Throughput Issues for HRb.
Doc.: IEEE /0929r1 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE /0929r0 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE r2 Submission July 12, 2000 O'Farrell & Aguado, Supergold Comm. Ltd.Slide 1 Project: IEEE P Working Group for Wireless Personal.
Doc.: IEEE /1289r0 Submission November 2015 Thomas Handte, SonySlide 1 Non-Uniform Constellations for 1024-QAM Date: 2015/11/08 Authors:
Doc.: IEEE /159r0 Submission March 2002 S. Hori, Y Inoue, T. Sakata, M. Morikura / NTT. Slide 1 System capacity and cell radius comparison with.
Doc.: IEEE /0929r2 Submission September 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE /1484r4 Submission January 2012 Hongyuan Zhang, et. Al.Slide 1 11ah Data Transmission Flow Date: Authors:
Doc.: IEEE /390 Submission November 2000 Mark Webster and Steve Halford, IntersilSlide 1 Reuse of b Preambles with HRb OFDM Mark Webster.
Matthew B. Shoemake, Ph.D. Anuj Batra, Ph.D.
doc.: IEEE <doc#>
Channelization for HRb OFDM
Karen Halford, Ph.D. and Mark Webster
Evaluating Channel Estimation Sensitivity
doc.: IEEE /304 Mark Webster Steve Halford
Comparison of IEEE g Proposals: PBCC, OFDM & MBCK
Range & Rate of CCK-OFDM
Jim Zyren Mark Webster Steve Halford Intersil Corporation
On The Use Of Reed Solomon Codes For n
OFDM System Performance
WUR Dual SYNC Design Follow-up: SYNC bit Duration
CCK-OFDM Closing Remarks
6 July, 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: FPP SUN Simulation Results – Redpine Signals.
Month Year doc.: IEEE yy/xxxxr0 January 2008
CCK-OFDM Summary Steve Halford Mark Webster Jim Zyren Paul Chiuchiolo
May 203 doc.: IEEE r1 May 2003 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG3a Comparison.
August 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability of k] Date Submitted:
doc.: IEEE <doc#>
doc.: IEEE <doc#>
GCM Communications Technology
6 July, 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: FPP SUN Simulation Results – Redpine Signals.
Sean Coffey, Ph.D., Chris Heegard, Ph.D.
Technical Feasibility of OFDM for HRb
Technical Feasibility of OFDM for HRb
Performance Analysis of Outer RS Coding Scheme
Technical Feasibility of CCK Extensions for HRb
May 203 doc.: IEEE r2 May 2003 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG3a Comparison.
Presentation transcript:

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 1 OFDM System Performance Karen Halford, Steve Halford and Mark Webster

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 2 Outline of Proposal Presentations  TGg Regulatory Approval Plan Speaker: Jim Zyren  Overview of OFDM for High Rate Speaker: Steve Halford  Reuse of b Preambles with OFDM Speaker: Mark Webster  Ultra-short Preamble with HRb OFDM Speaker: Mark Webster  OFDM System Performance Speaker: Steve Halford  Power Am Effects for HRb OFDM Speaker: Mark Webster  Channelization for HRb OFDM Speaker: Mark Webster  Phase Noise Sensitivity for HRb OFDM Speaker: Jim Zyren  Implementation and Complexity Issues for OFDM Speaker: Steve Halford  Why OFDM for the High Rate b Extension? Speaker: Jim Zyren

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 3 Outline of Presentation 5.1 AWGN Performance 5.2 Rayleigh Fading Performance 5.3 Multipath Performance Exponential Channel with Flat Fading Exponential Channel without Flat Fading (Normalized) PER sweeps from 1% to 10 % 5.4 Throughput Performance 5.5 Performance Against CW Jammer (FCC Test)

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 100 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 1000 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 2346 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Rayleigh Fading Performance: Block Diagram Transmitter Model Packet Length Data Rate Rayleigh Coefficient Receiver Model Measure Packet Error Rate Packet Error Rate Measure energy per bit Calculate Noise Power (N 0 ) Generate Noise x+

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Rayleigh Fading Performance: 1000 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Rayleigh Fading Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: Block Diagram Exponential Channel Model Transmitter Model Packet Length Data Rate Sample Rate Delay Spread Receiver Model Measure Packet Error Rate Packet Error Rate Measure energy per bit Calculate Noise Power (N 0 ) Generate Noise

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: Matlab ® Code

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: Eb/No

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: SNR

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance without Flat Fading: Block Diagram Exponential Channel Model Transmitter Model Packet Length Data Rate Sample Rate Delay Spread Receiver Model Measure Packet Error Rate Packet Error Rate Generate Noise Measure energy per bit Calculate Noise Power (N 0 )

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance without Flat Fading: Eb/No

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance without Flat Fading: SNR

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide : Multipath Sweeps: 1% to 10% For each modulation mode detemine and state the SNR (Es/No) at which in AWGN only, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23b above, fix the amount of AWGN at the 0.01 PER level for AWGN only. Increase the RMS delay spread until the PER for 1000B packets reach 0.1. State the RMS delay spread at this point. Comparison Item 24 Answer: 0.0 nSeconds for all rates Why ?

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Sweeps: 1% to 10% PER Curves are very steep -- about 2 dB separates the 1% from the 10 % point

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Sweeps: 1% to 10% Rayleigh fading causes frequent swings to low SNR level

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Sweeps: 1% to 10% For each modulation mode detemine and state the SNR (Es/No) at which 25 nSeconds RMS delay, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23c above, fix the amount of AWGN at the 0.01 PER level for 25 nSeconds RMS delay. Increase the RMS delay spread until the PER for 1000B packets reach 0.1. State the RMS delay spread at this point. What we ran in place of Comparison Item 24

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance: PER sweeps from 1% to 10%

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput Performance Preamble Structures ACK Assumptions Throughput Analysis Tables of 100, 1000, 2346 Byte Packets Plots for full range of packet sizes Throughput analysis for varying durations of overhead

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Preamble Structures: Long and Short Preambles PREAM/HDR 72 1 Mbps PREAMBLE/HEADER HRb LONG PREAMBLE HRb SHORT PREAMBLE 96 usecs 192 usecs Data Payload 10.9 usecs PSDU SELECTABLE OFDM 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps PSDU SELECTABLE OFDM 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps OFDM SYNC OFDM SYNC 10.9 usecs ~6 usecs Signal Extension ~6 usecs Signal Extension

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Preamble Structures: Ultra-Short Preamble Data Payload PSDU 6.6, 9.9, 13.2, 19.8, 26.4, 39.6, 52.8 or 59.4 Mbps SIGNAL SYMBOL Data Rate # bytes of data Long SYNC 16 usecs3.6 usecs 12 Short Syncs Rep’s Signal Extension ~6 usecs Proposed Ultra-Short Preamble

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide ACK Assumptions SIFSFragment 1 SIFSACK 1 source destination DIFSData SIFSACK source destination 1) No RTS/CTS OR MPDU < RTS_Threshold: DIFS RTS SIFSCTS source destination 2) RTS/CTS and/or MPDU > RTS_Threshold: Data SIFSACK 3) Middle of Fragmented Transmission: Many different scenarios, but the constant is: {MPDU, SIFS, ACK} SIFS

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide ACK Assumptions (continued) Packet Header PSDU SELECTABLE OFDM 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps OFDM PAD ~6 usecs Packet HeaderACK SIFS Mbps = 20 usec

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput for 100 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput for 1000 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput for 2346 Byte Packets

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput with ACK

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput without ACK

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Comparison of Throughput for Variable Overhead for 100 Byte MPDU

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Comparison of Throughput for Variable Overhead for 1000 Byte MPDU

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Comparison of Throughput for Variable Overhead for 2346 Byte MPDU

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Aggregate Throughputs for 2.4 GHz Our proposal allows for 3 channels in US 2.4 GHz band Each channel can coexist in the same area Aggregate throughput is 3 times single channel throughput

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide CW Jammer Test Description CW jammer test steps a CW tone across the signal band in 50 kHz steps. At each step, the jamming level required to to produce the recommended BER is determined. The worst 20% of the J/S levels are discarded and the smallest of the remaining J/S is used as the jamming margin. Processing gain is then calculated according to the following:

doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Performance Against CW Jammer G p = (S/N) 0 + M j + L sys