doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 1 OFDM System Performance Karen Halford, Steve Halford and Mark Webster
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 2 Outline of Proposal Presentations TGg Regulatory Approval Plan Speaker: Jim Zyren Overview of OFDM for High Rate Speaker: Steve Halford Reuse of b Preambles with OFDM Speaker: Mark Webster Ultra-short Preamble with HRb OFDM Speaker: Mark Webster OFDM System Performance Speaker: Steve Halford Power Am Effects for HRb OFDM Speaker: Mark Webster Channelization for HRb OFDM Speaker: Mark Webster Phase Noise Sensitivity for HRb OFDM Speaker: Jim Zyren Implementation and Complexity Issues for OFDM Speaker: Steve Halford Why OFDM for the High Rate b Extension? Speaker: Jim Zyren
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 3 Outline of Presentation 5.1 AWGN Performance 5.2 Rayleigh Fading Performance 5.3 Multipath Performance Exponential Channel with Flat Fading Exponential Channel without Flat Fading (Normalized) PER sweeps from 1% to 10 % 5.4 Throughput Performance 5.5 Performance Against CW Jammer (FCC Test)
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 100 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 1000 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 2346 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide AWGN Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Rayleigh Fading Performance: Block Diagram Transmitter Model Packet Length Data Rate Rayleigh Coefficient Receiver Model Measure Packet Error Rate Packet Error Rate Measure energy per bit Calculate Noise Power (N 0 ) Generate Noise x+
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Rayleigh Fading Performance: 1000 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Rayleigh Fading Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: Block Diagram Exponential Channel Model Transmitter Model Packet Length Data Rate Sample Rate Delay Spread Receiver Model Measure Packet Error Rate Packet Error Rate Measure energy per bit Calculate Noise Power (N 0 ) Generate Noise
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: Matlab ® Code
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: Eb/No
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance with Flat Fading: SNR
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance without Flat Fading: Block Diagram Exponential Channel Model Transmitter Model Packet Length Data Rate Sample Rate Delay Spread Receiver Model Measure Packet Error Rate Packet Error Rate Generate Noise Measure energy per bit Calculate Noise Power (N 0 )
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance without Flat Fading: Eb/No
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance without Flat Fading: SNR
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide : Multipath Sweeps: 1% to 10% For each modulation mode detemine and state the SNR (Es/No) at which in AWGN only, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23b above, fix the amount of AWGN at the 0.01 PER level for AWGN only. Increase the RMS delay spread until the PER for 1000B packets reach 0.1. State the RMS delay spread at this point. Comparison Item 24 Answer: 0.0 nSeconds for all rates Why ?
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Sweeps: 1% to 10% PER Curves are very steep -- about 2 dB separates the 1% from the 10 % point
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Sweeps: 1% to 10% Rayleigh fading causes frequent swings to low SNR level
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Sweeps: 1% to 10% For each modulation mode detemine and state the SNR (Es/No) at which 25 nSeconds RMS delay, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23c above, fix the amount of AWGN at the 0.01 PER level for 25 nSeconds RMS delay. Increase the RMS delay spread until the PER for 1000B packets reach 0.1. State the RMS delay spread at this point. What we ran in place of Comparison Item 24
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Multipath Performance: PER sweeps from 1% to 10%
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput Performance Preamble Structures ACK Assumptions Throughput Analysis Tables of 100, 1000, 2346 Byte Packets Plots for full range of packet sizes Throughput analysis for varying durations of overhead
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Preamble Structures: Long and Short Preambles PREAM/HDR 72 1 Mbps PREAMBLE/HEADER HRb LONG PREAMBLE HRb SHORT PREAMBLE 96 usecs 192 usecs Data Payload 10.9 usecs PSDU SELECTABLE OFDM 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps PSDU SELECTABLE OFDM 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps OFDM SYNC OFDM SYNC 10.9 usecs ~6 usecs Signal Extension ~6 usecs Signal Extension
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Preamble Structures: Ultra-Short Preamble Data Payload PSDU 6.6, 9.9, 13.2, 19.8, 26.4, 39.6, 52.8 or 59.4 Mbps SIGNAL SYMBOL Data Rate # bytes of data Long SYNC 16 usecs3.6 usecs 12 Short Syncs Rep’s Signal Extension ~6 usecs Proposed Ultra-Short Preamble
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide ACK Assumptions SIFSFragment 1 SIFSACK 1 source destination DIFSData SIFSACK source destination 1) No RTS/CTS OR MPDU < RTS_Threshold: DIFS RTS SIFSCTS source destination 2) RTS/CTS and/or MPDU > RTS_Threshold: Data SIFSACK 3) Middle of Fragmented Transmission: Many different scenarios, but the constant is: {MPDU, SIFS, ACK} SIFS
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide ACK Assumptions (continued) Packet Header PSDU SELECTABLE OFDM 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps OFDM PAD ~6 usecs Packet HeaderACK SIFS Mbps = 20 usec
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput for 100 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput for 1000 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput for 2346 Byte Packets
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput with ACK
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Throughput without ACK
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Comparison of Throughput for Variable Overhead for 100 Byte MPDU
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Comparison of Throughput for Variable Overhead for 1000 Byte MPDU
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Comparison of Throughput for Variable Overhead for 2346 Byte MPDU
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Aggregate Throughputs for 2.4 GHz Our proposal allows for 3 channels in US 2.4 GHz band Each channel can coexist in the same area Aggregate throughput is 3 times single channel throughput
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide CW Jammer Test Description CW jammer test steps a CW tone across the signal band in 50 kHz steps. At each step, the jamming level required to to produce the recommended BER is determined. The worst 20% of the J/S levels are discarded and the smallest of the remaining J/S is used as the jamming margin. Processing gain is then calculated according to the following:
doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide Performance Against CW Jammer G p = (S/N) 0 + M j + L sys