What Can We Learn About the Ejecta from Solar-B/EIS P. F. Chen 1,2, D. H. Brooks 1, H. Isobe 1, K. Shibata 1 1. Kwasan Observatory, Kyoto University, Japan.

Slides:



Advertisements
Similar presentations
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Advertisements

Initial Results of EIS Shinsuke Imada (NAOJ) EIS Team.
Observations on Current Sheet and Magnetic Reconnection in Solar Flares Haimin Wang and Jiong Qiu BBSO/NJIT.
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
A flare compilation Lots of people including Louise Harra, Lidia van Driel Gesztelyi, Chris Goff, Sarah Matthews, Len Culhane, Cristina Mandrini, Pascal.
MHD modeling of coronal disturbances related to CME lift-off J. Pomoell 1, R. Vainio 1, S. Pohjolainen 2 1 Department of Physics, University of Helsinki.
1 Hinode Coordinated Observations: Plasma Composition Photospheric composition ~ 1 in coronal hole (CH) -> fast wind Coronal composition ~1.5-3 in active.
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
Hard X-ray Production in a Failed Filament Eruption David, Alexander, Rui Liu and Holly R., Gilbert 2006 ApJ 653, L719 Related Paper: Ji. H. et al., 2003.
Erupting flux rope, rising X-ray source and CME on 16 April 2002 C. Goff 1, L. van Driel-Gesztelyi 1,2,3, L. K. Harra 1, S. A. Matthews 1, and C.H. Mandrini.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
A full view of EIT waves Chen, P.F., Fang, C. & Shibata, K. ApJ, 2005, 622, Solar seminar Shiota.
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
X-ray Emission from O Stars David Cohen Swarthmore College.
X-ray Emission from Massive Stars David Cohen Swarthmore College.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
Department of Astronomy, Nanjing University, Nanjing , China C. Fang, M. D. Ding, P. F. Chen Possible collaboration between Solar-B and the facilities.
Time evolution of the chromospheric heating and evaporation process Case study of an M1.1 flare on 2014 September 6 Peter Young 1,2, Hui Tian 3, Katharine.
Coronal Dynamics - Can we detect MHD shocks and waves by Solar B ? K. Shibata Kwasan Observatory Kyoto University 2003 Feb. 3-5 Solar B ISAS.
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
EUV Imaging Spectrometer (EIS): Instrument Checkout, Performance Verification and Initial 90 Day Observing Plan Extended Solar Optical Telescope Meeting.
1 Introduction: Onset of solar flares and coronal mass ejections Yokoyama, T. Dept. Earth & Planetary Science, University of Tokyo Isobe, H. Univ. Tokyo.
Flare-associated shock waves observed in soft X-ray NARUKAGE Noriyuki Kwasan and Hida Observatories, Kyoto University – DC3 The 6 th Solar-B Science Meeting.
Coronal Loops Workshop 6, La Roche-en-Ardenne, Belgium, Jun 2013 Density of active region outflows derived from Fe XIV 264/274 Naomasa KITAGAWA &
POST CME EVENTS: COOL JETS AND CURRENT SHEET EVOLUTION A. Bemporad, G. Poletto, S. T. Suess IAU Symposium 226 Coronal and Stellar Mass Ejections September.
Current Sheets from WL and UV data: open questions Alessandro Bemporad INAF – Arcetri Astrophysical Observatory 1° ISSI Group Meeting October 23-27, 2006,
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
EVE Sun-as-a-Star Spectra Milligan et al “Fe Cascade” for SOL
Spectroscopic Detection of Reconnection Evidence with Solar-B II. Signature of Flows in MHD simulation Hiroaki ISOBE P.F. Chen *, D. H. Brooks, D. Shiota,
Deconstructing EIT Waves Marco Velli Jet Propulsion Laboratory, Caltech and Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze Thompson.
Coronal loops: new insights from EIS observations G. Del Zanna 1,2, S. Bradshaw 3, 1 MSSL, University College London, UK 2 DAMTP, University of Cambridge,
Spectroscopic observations of CMEs Hui Tian Harvard-Smithsonian Center for Astrophysics Collaborators: Scott W. McIntosh, Steve Tomczyk New England Space.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
XRT and EIS Observations of Reconnection associated Phenomena D. Shiota, H. Isobe, D. H. Brooks, P. F. Chen, and K. Shibata
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
IMAGING AND SPECTOROPIC INVESTIGATIONS OF A SOLAR CORONAL WAVE: PROPERTIES OF THE WAVE FRONT AND ASSOCIATED ERUPTING MATERIAL L OUISE K. HARRA AND A LPHONSE.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Observations –Morphology –Quantitative properties Underlying Physics –Aly-Sturrock limit Present Theories/Models Coronal Mass Ejections (CME) S. K. Antiochos,
On the spectroscopic detection of magnetic reconnection evidence with Solar B – I. Emission line selection and atomic physics issues P. F. Chen 1,2, H.
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
1 Hinode Highlights: Coronal Cavity Structure On October 9, 2014 a coronal cavity was observed by Hinode and IRIS as part of IHOP 264 The cavity structure.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
SPIRIT observations of the Sun in 175 Å and scientific tasks for SWAP&LYRA V. Slemzin P.N. Lebedev Physical Institute, Moscow.
Tracing the coronal emission in AGN with VLT/NACO
Planning Flare Observations for Hinode/EIS
Asami Hayato (RIKEN / Tokyo Univ. of Sci.)
Evolution of Flare Ribbons and Energy Release
Evolution of Flare Ribbons and Energy Release Ayumi Asai (浅井 歩)1,
TRACE Downflows and Energy Release
Motions of isolated G-band bright points in the solar photosphere
Downflows and Plasmoid Ejections as a Reconnection Outflow
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
High-cadence Radio Observations of an EIT Wave
Flare-Associated Oscillations Observed with NoRH
Flare Ribbon Expansion and Energy Release
On the nature of EIT waves, EUV dimmings and their link to CMEs
Downflow as a Reconnection Outflow
V. Grechnev1, A. Uralov1, I. Kuzmenko2, A. Kochanov1, V
An MHD Model for the Formation of Episodic Jets
Presentation transcript:

What Can We Learn About the Ejecta from Solar-B/EIS P. F. Chen 1,2, D. H. Brooks 1, H. Isobe 1, K. Shibata 1 1. Kwasan Observatory, Kyoto University, Japan 2. Department of Astronomy, Nanjing University( 南京大学 ), China

From Our Simulations Chen & Shibata, 2000, ApJ, 545, 524 Chen, Wu, Shibata, & Fang 2002, ApJ, 572, L99

From the PIs  Scientific Objectives Flare & CME onset process Reconnection evidence ……  Candidate Lines Ca XVII, Fe X--XV, Fe XXIII, Fe XXIV, Si VII, Si X

 VDEM (Velocity differential Emission Measure) It is directly related to the flaring plasma properties  Why Forward Modeling VDEM & Forward Modeling 1.Inversion Modeling is an ill-posed problem, and should be combined with the Forward Modeling ( resolution of SOHO/CDS is not high enough) 2.To suggest the most suitable lines for the corresponding phenomenon Coronal Reconnection outflow & Moreton waves

Scenario

T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta Units Observer slit I Ca XVII I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2

Fe X Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XI Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XII Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XIII Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XIV Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XV Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XXIII Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Fe XXIV Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Si VII Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Si X Units I 35  photons s -1 cm detector -2 cm flare -2 Å -1 VDEM photons s -1 (km s -1)-1 cm flare -2 Observer slit I Observer slit I Observer slit I T 0 =1.5 MK, n0=109 cm -3 T max =30 MK for flare loop top, & 12 MK for the ejecta

Summary  Ca XVII Red shift blue shift with a possible 2 peaks at the blue wing corresponding to the slow shock pair  Fe XV strong line, besides a static component, blue peaks  Si X strong line, besides a static component, 1- 2 peaks at the blue wing from the erupting flux rope and CME expansion  Fe X Besides a static component, one red peak turns to 1-2 blue peaks Across the reconnection point upwardly

Future Research  Contamination from other lines  Jets at multiwavelengths  To construct a G function which weakly depends on T, a 1 G 1 +a 2 G 2 +a 3 G 3 +a 4 G4+a 5 G 5 + ……