CONDITIONAL STATEMENTS If-Then Statements Section 2.2.

Slides:



Advertisements
Similar presentations
Conditional Statements
Advertisements

3.5 Showing Lines are Parallel
Conditional Statements
2.1 Conditional Statements
Section 2.1 Notes Conditional Statements. Conditional Statement A type of logic statement that has two parts: a hypothesis and a conclusion We will write.
1 U1-C1-L1 Logic: Conditional Statements. Conditional Statements 2 Conditional Statement Definition:A conditional statement is a statement that can be.
Conditional Statements
Conditional Statements
2-2 Conditional Statements
Warm Up Determine if each statement is true or false. 1. The measure of an obtuse angle is less than 90°. 2. All perfect-square numbers are positive. 3.
Lesson 2-1 Conditional Statements. Conditional Statement Defn. A conditional statement is a statement that can be written as an if- then statement. That.
2.1 Conditional Statements Goals Recognize a conditional statement Write postulates about points, lines and planes.
10/21/2015Geometry1 Section 2.1 Conditional Statements.
Geometry CH 4-1 Using Logical Reasoning Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Learning Targets I can recognize conditional statements and their parts. I can write the converse of conditional statements. 6/1/2016Geometry4.
Ex. 1 Identifying Hypothesis and Conclusion A conditional is an If, then statement Made of two parts Hypothesis and conclusion Hypothesis follows the.
Section 2-1: Conditional Statements Goal: Be able to recognize conditional statements, and to write converses of conditional statements. If you eat your.
Reasoning and Conditional Statements Advanced Geometry Deductive Reasoning Lesson 1.
Inductive/Dedu ctive Reasoning Using reasoning in math and science.
Conditional Statements. Standards/Objectives: Students will learn and apply geometric concepts. Objectives: –Recognize and analyze a conditional statement.
Conditional Statements Lesson 2-1. Conditional Statements have two parts: Hypothesis ( denoted by p) and Conclusion ( denoted by q)
Conditional Statements Learning Target: I can write converses, inverses, and contrapositives of conditionals.
CONDITIONALS. Conditional Statement: Any statement that is or can be written in if- then form. That is, If p then q.
Conditional Statement
Warm Up Determine if each statement is true or false. 1. The measure of an obtuse angle is less than 90°. 2. All perfect-square numbers are positive. 3.
Section 2-1 Conditional Statements. Conditional statements Have two parts: 1. Hypothesis (p) 2. Conclusion (q)
Conditional Statements Section 2-3 Conditional Statements If-then statements are called conditional statements. The portion of the sentence following.
Conditional Statements Goal: Be able to recognize conditional statements, and to write converses of conditional statements. If you eat your vegetables,
2.2.1 Analyze Conditional Statements and Proof Chapter 2: Reasoning and Proof.
Section 2-2: Conditional Statements. Conditional A statement that can be written in If-then form symbol: If p —>, then q.
2.3 Conditional Statements 0 Conditional statement- a statement that can be written in if-then form.
Unit 2 Reasoning and Proof “One meets his destiny often in the road he takes to avoid it.” ~ French Proverb.
Section 2-1: Conditional Statements TPI 32C: Use inductive and deductive reasoning to make conjectures, draw conclusions,
Section 2-2: Biconditionals and Definitions. Conditional: If two angles have the same measure, then the angles are congruent. Converse: If two angles.
Holt Geometry 2-2 Conditional Statements 2-2 Conditional Statements Holt Geometry.
Unit 3 Section 1 Logical Statements. Conditional Statements Suppose p and q are statements. Put them together in the form “____________”. We call this.
Applied Geometry Lesson 1-4 Conditional Statements & Their Converses Objective: Learn to write statements in if-then form and write the converses of the.
Section 2.2 Analyze Conditional Statements. What is an if-then statement? If-then statements can be used to clarify statements that may seem confusing.
Conditional Statements A conditional statement is a statement that can be written in “if-then” form. The hypothesis of the statement is the phrase immediately.
Conditional Statments. Warm Up What is the fourth point of plane XUR Name the intersection of planes QUV and QTX Are point U and S collinear?
2.1 CONDITIONAL STATEMENTS 10/2. Learning Targets I can find the truth value given a conditional and a converse I can rewrite a statement as a conditional.
Holt McDougal Geometry 2-2 Conditional Statements 2-2 Conditional Statements Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Section 2.1 Geometric Statements. Definitions: Conditionals, Hypothesis, & Conclusions: A conditional statement is a logical statement that has two parts:
If-then statement The hypothesis and conclusion of a conditional statement If two angles are congruent, then they have the same measure. Converse Interchanging.
2-1: Conditional Statements Chapter 2. Conditional Also referred to as an “if-then” statement: –“If you are not completely satisfied, then your money.
2-3 Biconditionals and Definitions Objective: To write biconditionals and recognize good definitions.
Inductive and Deductive Reasoning. Notecard 29 Definition: Conjecture: an unproven statement that is based on observations. You use inductive reasoning.
2.1, 2.2 and 5.4: Statements and Reasoning. Conditional is an if-then statement that contains two parts. The part following the if is the Hypothesis.
2-1 Conditional Statements M11.B.2 Objectives: 1) To recognize conditional statements. 2) To write converses of conditional statements.
Conditional Statements Mrs. Spitz Modifyied by Mrs. Ortiz-Smith Geometry.
CONDITIONAL STATEMENTS Section 2-1. Objectives  To recognize conditional statements.  To write converses of conditional statements.
Lesson 2-1 Conditional Statements 1 Lesson 2-3 Conditional Statements.
Entry Task Determine if each statement is true or false. 1. The measure of an obtuse angle is less than 90°. 2. All perfect-square numbers are positive.
Warm Up Week 6 1) write an equation that passes through the given point and y-intercept. ( 2, 1 ) ; b = 5.
Holt Geometry 2-2 Conditional Statements 2-2 Conditional Statements Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Inductive and Deductive Reasoning. Notecard 30 Definition: Conjecture: an unproven statement that is based on observations or given information.
Conditional Statements A conditional statement has two parts, the hypothesis and the conclusion. Written in if-then form: If it is Saturday, then it is.
Conditional & Biconditional Statements Chapter 2 Section 2 1.
Conditional & Biconditional Statements Chapter 2 Section 4.
Conditional Statements. 1) To recognize conditional statements and their parts. 2) To write converses, inverses, and contrapositives of conditionals.
2-1 CONDITIONAL STATEMENTS
Objective Write and analyze biconditional statements.
Conditional Statements
Conditional Statements
Objectives Students will…
Lesson 2.1 AIM: Conditional Statements
Angle Pairs More Angle Pairs Definitions Pictures Angles
Copyright © 2014 Pearson Education, Inc.
Conditional Statements
Conditional statement p→q Converse statement q→p
Presentation transcript:

CONDITIONAL STATEMENTS If-Then Statements Section 2.2

Warm Up Determine if each statement is true or false. 1. The measure of an obtuse angle is less than 90°. 2. All perfect-square numbers are positive. 3. Every prime number is odd. 4. Any three points are coplanar.

Conditional Statement 4 Definition: A conditional statement is a statement that can be written in if-then form. “If _____________, then ______________.” Children go to school.

Conditional Statements have two parts: 5 The hypothesis is the part of a conditional statement that follows “if” (when written in if-then form.) The conclusion is the part of an if-then statement that follows “then” (when written in if-then form.) The hypothesis is the given information, or the condition. The conclusion is the result of the given information.

The converse statement switches the hypothesis and conclusion. Although the original statement is true, the converse many not always be true.

a.Write each in if-then form b.Write the converse of the statement c.Give a counterexample if the converse is false. 1.Adjacent angles share a common side. 2.All squares are rectangles.