A C M 5 2. CCGPS Geometry Day 17 (8-29-13) UNIT QUESTION: What patterns can I find in right triangles? Standard: MCC9-12.G.SRT.6-8 Today’s Question: How.

Slides:



Advertisements
Similar presentations
Solving Right Triangles Essential Question How do I solve a right triangle?
Advertisements

The Trigonometric Functions we will be looking at
Find the missing measures. Write all answers in radical form.
Find the missing measures. Write all answers in radical form. 60° 30° 10 y z Warm – up 3 45  y 60  30  x 45 
Geometry B Bellwork 3) Using the inverse of tangent Find m N to the nearest degree. tan N = = m N = tan -1 (0.6) m N ≈ 31° N RX
Trig and Transformation Review. Transformation Translation  move  gives you direction and amount Reflection  flip  x/y axis count boxes Rotation 
Let’s Play What have you learned about Analytic Geometry?
TODAY IN GEOMETRY…  Review: Methods solving for missing sides of a right triangle  Learning Target: 7.6 Finding an angle using inverse Trigonometry 
Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle. Right Triangle Trigonometry Sections 9.1.
Trigonometry (RIGHT TRIANGLES).
Jeopardy Trig fractions Solving For Angles Solving for Sides Other Trig Stuff $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 Final Jeopardy.
Solve Right Triangles Ch 7.7. Solving right triangles What you need to solve for missing sides and angles of a right triangle: – 2 side lengths – or –
Sine, Cosine and Tangent Ratios Objective Students will be able to use sine, cosine, and tangent ratios to determine side lengths in triangles.
A B C Warm UP What side is The hypotenuse? What side is opposite  A?
Geometry Notes Lesson 5.3B Trigonometry
 A trigonometric ratio is a ratio of the lengths of 2 sides of a right triangle.  You will learn to use trigonometric ratios of a right triangle to determine.
Trig Ratios and Cofunction Relationships. Trig Ratios SOH-CAH-TOA.
Finding an angle. (Figuring out which ratio to use and getting to use the 2 nd button and one of the trig buttons. These are the inverse functions.) 5.4.
Warm up 100 ft x 45° 51.3° Find x. Round to the nearest foot. x = 25 ft.
Warmup: What is wrong with this? 30 ⁰. 8.3 and 8.4 Trigonometric Ratios.
Warm- Up 1. Find the sine, cosine and tangent of  A. 2. Find x. 12 x 51° A.
9-1 & 9-2 Trigonometry Functions. Vocabulary Examples 1) Write the ratios for Sin A Cos A Tan A 2) Write the ratios for Sin A Cos A Tan A.
The midpoint of is M(-4,6). If point R is (6, -9), find point J.
TRIGONOMETRIC RATIOS Chapter 9.5. New Vocabulary  Trigonometric Ratio: The ratio of the lengths of two sides or a right triangle.  The three basic trigonometric.
Geometry A BowerPoint Presentation.  Try these on your calculator to make sure you are getting correct answers:  Sin ( ) = 50°  Cos ( )
Short Leg:Long Leg:Hypotenuse Right Triangle This is our reference triangle for the triangle. We will use a reference triangle.
GEOMETRY HELP Use the triangle to find sin T, cos T, sin G, and cos G. Write your answer in simplest terms. sin T = = = opposite hypotenuse.
7.2 Finding a Missing Side of a Triangle using Trigonometry
Original Power Point From mackinac.eup.k12.mi.us/cms/lib/ Mackinac Island Public School Author: Mrs. Bennett.
Section 1 – Trigonometry and the Graphing Calculator After this section, you should be able to show that you can: Know the SIX trig. functions Change degree-minutes.
Solve Right Triangles Ch 7.7. Solving right triangles What you need to solve for missing sides and angles of a right triangle: – 2 side lengths – or –
Right Triangle Trigonometry Three Basic Trig Ratios: sin θ = opposite/hypotenuse cos θ = adjacent/hypotenuse tan θ = opposite/adjacent Adjacent Side Hypotenuse.
Right Triangle Trig: Solving for a Missing Side. Trigonometric Ratios We define the 3 trigonometric ratios in terms of fractions of sides of right angled.
Finding a Missing Angle of a Right Triangle. EXAMPLE #1  First: figure out what trig ratio to use in regards to the angle.  Opposite and Adjacent O,A.
Right Triangle Trig: Finding a Missing Angle. Finding an angle. (Figuring out which ratio to use and getting to use the 2 nd button and one of the trig.
13.1 R IGHT T RIANGLE T RIG Algebra II w/ trig. Right Triangle:hypotenuse Side opposite Side adjacent 6 Basic Trig Functions: In addition:
(1) Sin, Cos or Tan? x 7 35 o S H O C H A T A O Answer: Tan You know the adjacent and want the opposite.
Find the missing measures (go in alphabetical order) 60° 30° 10 y z Warm – up 3 45  y 60  30  x 45 
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
9-2 Sine and Cosine Ratios. There are two more ratios in trigonometry that are very useful when determining the length of a side or the measure of an.
SOH-CAH-TOA???? What does the abbreviation above stand for????
The Trigonometric Functions SINE COSINE TANGENT. SINE Pronounced “sign”
A C M If C = 20º, then cos C is equal to: A. sin 70 B. cos 70 C. tan 70.
The Trigonometric Functions we will be looking at Sine Cosine Tangent Cosecant Secant Cotangent.
[8-3] Trigonometry Mr. Joshua Doudt Geometry pg
Right Triangle Trigonometry
You will need a calculator and high lighter!
The Trigonometric Functions we will be looking at
The Trigonometric Functions we will be looking at
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
Hypotenuse hypotenuse opposite opposite adjacent adjacent.
7.3 Finding Missing Parts Objectives: • Write trigonometric ratio’s
Lesson 15: Trigonometric Ratios
Warm-up Find the height of the building and the depth of the anchor.
Do Now Find the ratios for sin A, cos A, and tan A. Make sure you simplify as much as possible 2. Find the ratios for sin C, cos C, and tan C. Make sure.
Hypotenuse hypotenuse opposite opposite adjacent adjacent.
Some Old Hippie Came A Hoppin’ Through Our Old Hippie Apartment.
Trig Ratios C 5 2 A M Don’t forget the Pythagorean Theorem
Solve Right Triangles Mr. Funsch.
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
Warm – up Find the sine, cosine and tangent of angle c.
Hypotenuse hypotenuse opposite opposite adjacent adjacent.
The Trigonometric Functions we will be looking at
Trigonometry for Angle
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
The Trigonometric Functions we will be looking at
Right Triangle Trigonometry:
Presentation transcript:

A C M 5 2

CCGPS Geometry Day 17 ( ) UNIT QUESTION: What patterns can I find in right triangles? Standard: MCC9-12.G.SRT.6-8 Today’s Question: How do we use trig ratios to find the missing sides and angles of a triangle? Standard: MCC9-12.G.SRT.6-8

opposite hypotenuse adjacent hypotenuse opposite adjacent

Finding an angle. (Figuring out which ratio to use and getting to use an inverse trig button.)

Ex: 1 Figure out which ratio to use. Find x. Round to the nearest tenth. 20 m 40 m Tan / 40 ) Shrink yourself down and stand where the angle is. Now, figure out which trig ratio you have and set up the problem.

Ex: 1 Figure out which ratio to use. Find x. Round to the nearest tenth. 15 m 50 m Sin / 50 ) Shrink yourself down and stand where the angle is. Now, figure out which trig ratio you have and set up the problem.

Ex. 3: Find . Round to the nearest degree

Ex. 4: Find . Round to the nearest degree. 23 7

Ex. 5: Find . Round to the nearest degree

Finding a side. (Figuring out which ratio to use and getting to use a trig button.)

Ex: 1 Figure out which ratio to use. Find x. Round to the nearest tenth. 20 m x tan 2055 ) Shrink yourself down and stand where the angle is. Now, figure out which trig ratio you have and set up the problem.

Ex: 2 Find the missing side. Round to the nearest tenth. 80 ft x tan 8072 =  ( ) ) Shrink yourself down and stand where the angle is. Now, figure out which trig ratio you have and set up the problem.

Ex: 3 Find the missing side. Round to the nearest tenth. 283 m x Shrink yourself down and stand where the angle is. Now, figure out which trig ratio you have and set up the problem.

Ex: 4 Find the missing side. Round to the nearest tenth. 20 ft x

When we are trying to find a side we use sin, cos, or tan. When we are trying to find an angle we use ( INVERSE ) sin -1, cos -1, or tan -1.