7-3 Knock-out Barrier Option

Slides:



Advertisements
Similar presentations
Chap 11. Introduction to Jump Process
Advertisements

Martingales and Measures Chapter Derivatives Dependent on a Single Underlying Variable.
指導教授:戴天時 學 生:王薇婷 7.3 Knock-out Barrier Option. There are several types of barrier options. Some “Knock out” when the underlying asset price crosses a.
Chapter 3 Brownian Motion 報告者:何俊儒.
Chapter 3 Brownian Motion 3.2 Scaled random Walks.
Dividend-Paying Stocks 報告人:李振綱 Continuously Paying Dividend Continuously Paying Dividend with Constant Coefficients Lump Payments of.
Chapter 14 The Black-Scholes-Merton Model
Stochastic Calculus for Finance II Steven E. Shreve 6.5 Interest Rate Models (1) 交大財金所碩一 許嵐鈞.
L7: Stochastic Process 1 Lecture 7: Stochastic Process The following topics are covered: –Markov Property and Markov Stochastic Process –Wiener Process.
Derivatives Inside Black Scholes
Derivation of Black - Scholes Formula by Change of Time Method Anatoliy Swishchuk Mathematical and Computational Finance Laboratory, Department of Mathematics.
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
平均值檢定 假設 檢定 One Sample 平均值 是否為 u. One Sample—1 工廠甲過去向 A 公司購買原料, 平均交貨日約為 4.94 日, 標準差 現在 A 公司改組, 甲工廠繼續向 A 公司 購買, 隨機抽取 8 次採購, 平均日數為 4.29 日, 請問 A 公.
Credit Derivatives. Agenda 21.4 CDS Forwards & Options 21.5 Total Return Swaps 21.6 Basket CDS 21.7 CDO.
Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter.
Fang-Bo Yeh, Dept. of Mathematics, Tunghai Univ.2004.Jun.29 1 Equity Linked Notes, ELN 股權連結型金融商品 東海大學數學系葉芳栢 Fang-Bo Yeh.
Options and Speculative Markets Inside Black Scholes Professor André Farber Solvay Business School Université Libre de Bruxelles.
paper report R96072 黃源鱗 Using Equity Prices to Estimate Default Probabilities ( 使用股票價格計算違約機率 )  More up-to-date  The value of the equity.
Stopping Times 報告人 : 李振綱. On Binomial Tree Model European Derivative Securities Non-Path-Dependent American Derivative Securities Stopping Times.
Chapter 4 Stochastic calculus 報告者:何俊儒. 4.1 Introduction.
: Little Red Riding Hood ★★★☆☆ 題組: Contest Volumes Archive with Online Judge 題號: 11067: Little Red Riding Hood 解題者:陳明凱 解題日期: 2008 年 3 月 14 日 題意:
5.4 Fundamental Theorems of Asset Pricing (2) 劉彥君.
公司加入市場的決定. 定義  平均成本 = 總成本 ÷ 生產數量 = 每一單位產量所耗的成本  平均固定成本 = 總固定成本 ÷ 生產數量  平均變動成本 = 總變動成本 ÷ 生產數量.
7.4 Lookback Options 指導教授:戴天時 報告者:陳博宇. 章節結構 Floating Strike Lookback Black-Scholes-Merton Equation Reduction of Dimension Computation.
3.4 Quadratic Variation First-Order Variation Quadratic Variation Volatility of Geometric Brownian Motion.
Connections with Partial Differential Equations 陳博宇 Chapter 6.
FE-W EMBAF Zvi Wiener Financial Engineering.
Risk-Neutral Pricing 報告者 : 鍾明璋 (sam). 5.1Introduction 5.2: How to construct the risk-neutral measure in a model with a single underlying security. This.
1 第十章 選擇權 (Options) 是一種或有 (contingent) 的交易契約 契約買方 (holder) 於未來特定時間 ( 到期日 ) 或之前有權利決定是否執行交易契約 ( 以 履約價格買進 ( 或賣出 ) 標的物 ) ,契約賣 方 (writer) 有義務配合 買方須付權利金 (premium)
5.2Risk-Neutral Measure Part 2 報告者:陳政岳 Stock Under the Risk-Neutral Measure is a Brownian motion on a probability space, and is a filtration for.
Asset Pricing Theory Option A right to buy (or sell) an underlying asset. Strike price: K Maturity date: T. Price of the underlying asset: S(t)
15 消費者物價指數與生活成本 CHAPTER. 15 消費者物價指數與生活成本 CHAPTER.
第九章利率衍生性商品的評價 市場模型(Market models) 財務工程 呂瑞秋著.
第五章 隨機利率下零息債券的評價 財務工程 呂瑞秋著.
財務工程 呂瑞秋著 1 第十二章 Black and Scholes 模型的延伸. 財務工程 呂瑞秋著 2 Black and Scholes 模型擴充應用 外匯選擇權 (foreign currency options) 的 評價 商品期貨選擇權 (commodity futures options)
7.5 Asian Options 指導老師:戴天時 演講者:鄭凱允. 序 An Asian option is one whose payoff includes a time average of the underlying asset price. The average may be over.
Double-Sided Parisian Options Winter School Mathematical Finance - January 22 th 2007 – Jasper Anderluh joint work with J.A.M. van der Weide.
1 Today Options Risk management: Why, how, and what? Option payoffs Reading Brealey and Myers, Chapter 20, 21.
選擇權的交易策略 第一節 單一部位 第二節 避險部位 第三節 組合部位 第四節 價差部位 第五節 合成部位 第六節 套利部位.
5.6 Forwards and Futures 鄭凱允 Forward Contracts Let S(t),, be an asset price process, and let R(t),, be an interest rate process. We consider will.
9.4 Forward Measure Forward Price Zero-Coupon Bond as Numeraire Theorem
Change of Time Method: Application to Mathematical Finance. I. Anatoliy Swishchuk Math & Comp Finance Lab Dept of Math & Stat, U of C ‘Lunch at the Lab’
11.1 Options, Futures, and Other Derivatives, 4th Edition © 1999 by John C. Hull The Black-Scholes Model Chapter 11.
1 The Black-Scholes-Merton Model MGT 821/ECON 873 The Black-Scholes-Merton Model.
第四章 Brown运动和Ito公式.
Investment. A Simple Example In a simple asset market, there are only two assets. One is riskfree asset offers interest rate of zero. The other is a risky.
1 課程十: Options 選擇權 本講義僅供上課教學之用。. 2 何謂衍生性金融商品 Derivatives Contracts that are priced according to underlying variables (prices are derived from underlying).
© 2011 Neil D. Pearson A Simulation Implementation of the Hull- White Model Neil D. Pearson.
5.4 Fundamental Theorems of Asset Pricing 報告者:何俊儒.
Modelling stock price movements July 31, 2009 By: A V Vedpuriswar.
TheoryApplication Discrete Continuous - - Stochastic differential equations - - Ito’s formula - - Derivation of the Black-Scholes equation - - Markov processes.
9. Change of Numeraire 鄭凱允. 9.1 Introduction A numeraire is the unit of account in which other assets are denominated and change the numeraire by changing.
2000 년 4 월 19 일 On Financial Derivatives 김 용 환 국제금융센타 ( KCIF )
Vanilla options The payoff of a European (vanilla) option at expiry is ---call ---put where -- underlying asset price at expiry -- strike price The terminal.
6.4 Partial Differential Equation 指導老師:戴天時教授 學 生:王薇婷.
Chapter 14 Exotic Options: I. Copyright © 2006 Pearson Addison-Wesley. All rights reserved Exotic Options Nonstandard options Exotic options solve.
S TOCHASTIC M ODELS L ECTURE 5 P ART II S TOCHASTIC C ALCULUS Nan Chen MSc Program in Financial Engineering The Chinese University of Hong Kong (Shenzhen)
The Black- Scholes Equation
3.6 First Passage Time Distribution
THE BLACK-SCHOLES PDE FOR PUT OPTION JIRYUNG JEONG DOUG HENDRY QUAN HOANG NGUYEN TRAN.
Numerical Methods for derivatives pricing. 2 American Monte Carlo It’s difficult to price an option with early exercise using Monte Carlo But some options.
Chapter 14 Exotic Options: I. © 2013 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.19-2 Exotic Options Nonstandard options.
Primbs, MS&E Applications of the Linear Functional Form: Pricing Exotics.
Key Concepts and Skills
Mathematical Finance An Introduction
Option prices and the Black-Scholes-Merton formula
Brownian Motion & Itô Formula
Chaper 4: Continuous-time interest rate models
5.3 Martingale Representation Theorem
Presentation transcript:

7-3 Knock-out Barrier Option 學生: 潘政宏

障礙選擇權即是選擇權標的物價格上(下)方設有障礙 價格,當價格觸碰到障礙價格,則合約失效(生效), 即knock-out (knock-in) option。 一般標準障礙選擇權可分為八種: Out option In option Up option ( B > S(0) ) Down option ( B < S(0) )

7.3.1 Up-and-Out Call Our underlying risky asset is geometric Brownian motion: Consider a European call, T:expiring time K:strike price B:up-and out barrier

Ito formula

Ito formula Back

7.3.2 Black-Scholes-Merton Equation Theorem 7.3.1 Let v(t,x) denote the price at time t of the up-and-out call under the assumption that the call has not knocked out prior to time t and S(t)=x. Then v(t,x) satisfies the Black-Scholes-Merton partial differential equation: In the rectangle {(t,x);0≦t<T, 0≦x≦B} and satisfies The boundary conditions

Derive the PDE (7.3.4): (1)Find the martingale, (2)Take the differential (3)Set the dt term equal to zero. Begin with an initial asset price S(0)∈(0,B). We define the option payoff V(T) by (7.3.2). By the risk-neutral pricing formula: And Is a martingale.

We would like to use the Markov property to say that V(t)=v(t,S(t)) ,where v(t,S(t)) is the function in Theorem 7.3.1. However this equation does not hold for all Values of t along all paths. V(t) V(t ,S(t)) If the underlying asset price rises above the barrier B and then returns below the barrier by time t , then V(t)=0 v( t, S(t))is strictly positive for all value of 0≦t≦T and 0<x<B Path-dependent and remember that option has knock-out Not path-dependence, when S(t)<B give the price under the assumption that it has not knock-out.

Theorem 8.2.4(Theorem 4.3.2 of Volume I) A martingale stopped at a stopping time is still a martingale.

Lemma 7.3.2

Proof of Theorem 7.3.1

7.3.3 Computation of the Price of the Up- and-Out Call