Chapter 3 The Relational Model. Objectives u Terminology of relational model. u How tables are used to represent data. u Connection between mathematical.

Slides:



Advertisements
Similar presentations
Chapter IV Relational Data Model Pemrograman Sistem Basis Data.
Advertisements

The Relational Model Much of the material presented in these slides was developed by Dr. Ramon Lawrence at the University of Iowa.
RELATIONAL DATABASES. Relational data Structure RELATION: Table with columns and rows ATTRIBUTE: Column of a relation DOMAIN: Set of allowable values.
Chapter 3 : Relational Model
CSC271 Database Systems Lecture # 5. Summary: Previous Lecture  Database languages  Functions of a DBMS  DBMS environment  Data models and their categories.
Relational Model (CB Chapter 4) CPSC 356 Database Ellen Walker Hiram College.
The Relational Model System Development Life Cycle Normalisation
Chapter 3 The Relational Model Transparencies © Pearson Education Limited 1995, 2005.
Relations The Relational Data Model John Sieg, UMass Lowell.
Lesson II The Relational Model © Pearson Education Limited 1995, 2005.
Chapter 3. 2 Chapter 3 - Objectives Terminology of relational model. Terminology of relational model. How tables are used to represent data. How tables.
1 Minggu 2, Pertemuan 3 The Relational Model Matakuliah: T0206-Sistem Basisdata Tahun: 2005 Versi: 1.0/0.0.
1 Pertemuan 04 MODEL RELASIONAL Matakuliah: >/ > Tahun: > Versi: >
Thomas Connolly and Carolyn Begg’s
Relational Database Management System A type of database in which records are stored in relational form is called relational database management system.
Database Architecture The Relational Database Model.
Databases Illuminated
CSC271 Database Systems Lecture # 6. Summary: Previous Lecture  Relational model terminology  Mathematical relations  Database relations  Properties.
Relational Model & Relational Algebra. 2 Relational Model u Terminology of relational model. u How tables are used to represent data. u Connection between.
Lecture 2 The Relational Model. Objectives Terminology of relational model. How tables are used to represent data. Connection between mathematical relations.
Chapter 4 The Relational Model Pearson Education © 2014.
© Pearson Education Limited, Chapter 2 The Relational Model Transparencies.
Relational Model Session 6 Course Name: Database System Year : 2012.
Chapter 4 The Relational Model.
Chapter 3 The Relational Model Transparencies Last Updated: Pebruari 2011 By M. Arief
CS 3630 Database Design and Implementation. 2 Mathematical Relation A mathematical relation is a subset of a Cartesian Product. A1  A2  A3  …  An.
DBSQL 3-1 Copyright © Genetic Computer School 2009 Chapter 3 Relational Database Model.
Module 3: The Relational Model.  Overview Terminology Relational Data Structure Mathematical Relations Database Relations Relational Keys Relational.
Chapter 3 The Relational Model. 2 Chapter 3 - Objectives u Terminology of relational model. u How tables are used to represent data. u Connection between.
1 The Relational Database Model. 2 Learning Objectives Terminology of relational model. How tables are used to represent data. Connection between mathematical.
1 Mathematical Relation A mathematical relation is a subset of a Cartesian Product. A1  A2  A3  …  An = {(x1, x2, x3, …, xn): xi  Ai} R  A1  A2.
9/7/2012ISC329 Isabelle Bichindaritz1 The Relational Database Model.
The Relational Model Pertemuan 03 Matakuliah: M0564 /Pengantar Sistem Basis Data Tahun : 2008.
Relational Database. Database Management System (DBMS)
Slide Chapter 5 The Relational Data Model and Relational Database Constraints.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
Announcements Reading for Monday –4.6 Homework 3 – Due 9/29.
Chapter 2 Introduction to Relational Model. Example of a Relation attributes (or columns) tuples (or rows) Introduction to Relational Model 2.
Chapter 2: Intro to Relational Model. 2.2 Example of a Relation attributes (or columns) tuples (or rows)
12/2/2015CPSC , CPSC , Lecture 41 Relational Model.
L8-2-S1 Misc Topics © M.E. Fayad SJSU -- CmpE Database Design Dr. M.E. Fayad, Professor Computer Engineering Department, Room #283I College of.
The Relational Model. 2 Relational Model Terminology u A relation is a table with columns and rows. –Only applies to logical structure of the database,
CHAPTER 2 : RELATIONAL DATA MODEL Prepared by : nbs.
The Relational Model © Pearson Education Limited 1995, 2005 Bayu Adhi Tama, M.T.I.
The relational model1 The relational model Mathematical basis for relational databases.
Mapping ER to Relational Model Each strong entity set becomes a table. Each weak entity set also becomes a table by adding primary key of owner entity.
CSCI 6315 Applied Database Systems Review for Midterm Exam I Xiang Lian The University of Texas Rio Grande Valley Edinburg, TX 78539
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
Chapter 4 The Relational Model Pearson Education © 2009.
LECTURE TWO Introduction to Databases: Data models Relational database concepts Introduction to DDL & DML.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
INFO 340 Lecture 3 Relational Databases. Based on the relational model, grounded in mathematic set theories. Three basic elements: Relation, Tuple, and.
Database Design The Relational Model Text Ch5
Chapter 3: Intro to Relational Model
Chapter 2: Intro to Relational Model
Chapter 2: Intro to Relational Model
The Relational Database Model
Data Base System Lecture 6: Relational Model
Chapter 3 The Relational Model.
Chapter 4 The Relational Model Pearson Education © 2009.
Chapter 4 The Relational Model Pearson Education © 2009.
DATABASE SYSTEM.
Chapter 4 The Relational Model Pearson Education © 2009.
The Relational Model Transparencies
Chapter 4 The Relational Model Pearson Education © 2009.
Chapter 4 The Relational Model Pearson Education © 2009.
Design tools and techniques for a relational database system
Chapter 4 The Relational Model Pearson Education © 2009.
Chapter 3 The Relational Model
RELATIONAL DATA MODEL - 1
Presentation transcript:

Chapter 3 The Relational Model

Objectives u Terminology of relational model. u How tables are used to represent data. u Connection between mathematical relations and relations in the relational model. u Properties of database relations. u How to identify candidate, primary, and foreign keys. u Meaning of entity integrity and referential integrity.

Relational Model Terminology u A relation –A table with columns and rows u Attribute – A named column of a relation. u Domain –Set of allowable values for one or more attributes

Relational Model Terminology u Tuple –A row of a relation u Degree –Number of attributes in a relation u Cardinality –Number of tuples in a relation u Relational Database –A collection of normalized relations with distinct relation names.

Instances of Branch and Staff (part) Relations

Examples of Attribute Domains

Alternative Terminology for Relational Model

Database Relations u Relation schema –Named relation defined by a set of attribute and domain name pairs. u Relational database schema –Set of relation schemas, each with a distinct name.

Properties of Relations u Relation name is distinct from all other relation names in relational schema. u Each cell of relation contains exactly one atomic (single) value. u Each attribute has a distinct name. u Values of an attribute are all from the same domain.

Properties of Relations u Each tuple is distinct; there are no duplicate tuples. u Order of attributes has no significance. u Order of tuples has no significance, theoretically.

Relational Keys u Superkey –An attribute, or a set of attributes, that uniquely identifies a tuple within a relation. u Candidate Key –Superkey (K) such that no proper subset is a superkey within the relation. –In each tuple of R, values of K uniquely identify that tuple (uniqueness). –No proper subset of K has the uniqueness property (irreducibility).

Relational Keys u Primary Key –Candidate key selected to identify tuples uniquely within relation. u Alternate Keys –Candidate keys that are not selected to be primary key. u Foreign Key –Attribute, or set of attributes, within one relation that matches candidate key of some (possibly same) relation.

Relational Integrity u Null –Represents value for an attribute that is currently unknown or not applicable for tuple –Deals with incomplete or exceptional data. –Represents the absence of a value and is not the same as zero or spaces, which are values.

Relational Integrity u Entity Integrity –In a base relation, no attribute of a primary key can be null. u Referential Integrity –If foreign key exists in a relation, either foreign key value must match a candidate key value of some tuple in its home relation or foreign key value must be wholly null.

Relational Integrity u Enterprise Constraints –Additional rules specified by users or database administrators.

Mathematical definition of relation u Consider two sets, D 1 & D 2, where D 1 = {2, 4} and D 2 = {1, 3, 5}.  Cartesian product, D 1  D 2, is set of all ordered pairs, where first element is member of D 1 and second element is member of D 2. D 1  D 2 = {(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5)}

Mathematical definition of relation u Any subset of Cartesian product is a relation; e.g. R = {(2, 1), (4, 1)} u May specify which pairs are in relation using some condition for selection; e.g. –second element is 1: R = {(x, y) | x  D 1, y  D 2, and y = 1} –first element is always twice the second: S = {(x, y) | x  D 1, y  D 2, and x = 2y}

Mathematical definition of relation  Consider three sets D 1, D 2, D 3 with Cartesian Product D 1  D 2  D 3 ; e.g. D 1 = {1, 3}D 2 = {2, 4}D 3 = {5, 6} D 1  D 2  D 3 = {(1,2,5), (1,2,6), (1,4,5), (1,4,6), (3,2,5), (3,2,6), (3,4,5), (3,4,6)} u Any subset of these ordered triples is a relation.