6.2.2012 Paul Dolejschi Characterisation of DSSD interstrip parameters BELLE II SVD-PXD Meeting.

Slides:



Advertisements
Similar presentations
Silicon Technical Specifications Review General Properties Geometrical Specifications Technology Specifications –Mask –Test Structures –Mechanical –Electrical.
Advertisements

HPK L1 teststructures HPK L1 half moon teststructure corresponding to main chips 6,7 Results on  Diode C-V  Coupling capacitors  polysilicon arrays.
Quality Assurance of Silicon Strip Detectors and Monitoring of Manufacturing Process Thomas Bergauer Institute f. High Energy Physics HEPHY, Vienna SiLC.
IAP-PAI 25/05/20051 CMS Si Rad. Hardness Introduction Damage in Si Neutron tests => Beam => Irrad. Setup.
January 22, Run IIB Silicon workshop Purdue University Bortoletto Daniela, Bolla Gino, Canepa Anadi Hamamatsu testing I-V characteristics up to 1000V.
Belle-II Meeting Nov Nov Thomas Bergauer (HEPHY Vienna) Status of DSSD Sensors.
1 Generic Silicon Detector R&D Thomas Bergauer Institute for High Energy Physics (HEPHY) Austrian Academy of Sciences, Vienna for the SiLC Collaboration.
128 September, 2005 Silicon Sensor for the CMS Tracker The Silicon Sensors for the Inner Tracker of CMS CMS Tracker and it‘s Silicon Strip Sensors Radiation.
29 June 2004Paul Dauncey1 ECAL Readout Tests Paul Dauncey For the CALICE-UK electronics group A. Baird, D. Bowerman, P. Dauncey, C. Fry, R. Halsall, M.
Lecture 11: MOS Transistor
1 Chapter 5 Sensors and Detectors A detector is typically the first stage of a communication system. Noise in this stage may have significant effects on.
First Proton Irradiation of CMS Sensors W. de Boer, A. Dierlamm, A. Furgeri, E. Grigoriev, F. Hartmann, F. Hauler, L. Jungermann, Ch. Piasecki.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Silicon pad detector for an electromagnetic calorimeter at future linear collider experiments: characterisation and test beam results Antonio Bulgheroni.
October 2001General Tracker Meeting IEKP - Universität Karlsruhe (TH) 1 Results on proton irradiation tests in Karlsruhe F. Hartmann IEKP - Universität.
9/27/2004EE 42 fall 2004 lecture 121 Lecture #12 Circuit models for Diodes, Power supplies Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8 Then.
Semiconductor detectors
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
RC chip Junji Tojo RIKEN VTX Meeting February 9 th, 2005.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Silicon pad detectors for LCCAL: characterisation and first results Antonio Bulgheroni University of Milan – Italy on behalf of LCCAL: Official INFN R&D.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Frank Lehner U Zurich Characterization of inner layer sensors DØ Inner Layer Sensor Production Readiness Review FNAL, 8/8/2003 M. Demarteau, R. Demina,
Alumina Oxide Treatment Effect on Bias Resistance BZ1 W277 P19 Untreated (Grounds Tied) BZ1 W230 P7 Alumina Treated (Grounds Not Tied) Bias Voltage (V)
1 Plans of Vienna SLHC Proposal Workshop 20. February 2008.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Silicon Microstrip detector Single sided and double sided K.Kameswara rao, Tariq Aziz, Chendvankar, M.R.Patil Tata institute of fundamental research, Mumbai,
Full-size ATLAS Sensor Testing On behalf of the ATLAS R&D group Development of n-in-p Silicon Sensors for very high radiation environment Jan Bohm Institute.
4 May 2010 Thomas Bergauer (HEPHY Vienna) Testing of Test Structures in Vienna CMS Sensor-TUPO.
Quality Test of L1 sensors HPK 10 sensors –Tested all, 6 sent to Fermilab – Test structures, HPK 133 L00 CDF ELMA 9 sensors –Tested 6 of 9.
Status of the Low-Resistance (LowR) Strip Sensors Project CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
Electrical characteristics of un-irradiated ATLAS07 mini strip sensors A.Chilingarov, Lancaster University ATLAS Tracker Upgrade UK Workshop Coseners House,
Minni Singla & Sudeep Chatterji Goethe University, Frankfurt Development of radiation hard silicon microstrip detectors for the CBM experiment Special.
Testing Site Qualification Purpose: –Perform detailed scans of the silicon microstrips to make sure they all work. –Check HPK. Candidates for Certification:
Evaluation of the Low Resistance Strip Sensors (Low-R) Fabricated at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
News on microstrip detector R&D —Quality assurance tests— Anton Lymanets, Johann Heuser 12 th CBM collaboration meeting Dubna, October
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
1 Device Simulations & Hardware Developments for CBM STS Sudeep Chatterji CBM Group GSI Helmholtz Centre for Heavy Ion Research CBM Collaboration Meeting,
18 March 2009 Thomas Bergauer Prototype batch of DSSD from commercial vendors & Proposal for SVD Layout HEPHY Vienna.
VLSI INTERCONNECTS IN VLSI DESIGN - PROF. RAKESH K. JHA
p-on-n Strip Detectors: ATLAS & CMS
Paul Dolejschi Progress of Interstrip Measurements on DSSDs SVD.
Run Iib Workshop Dec 12-13, 2002 Silicon sensors procurement and quality assurance WBS Regina Demina Kansas State University.
Development of radiation hard Sensors & Cables for the CBM Silicon Tracking System Sudeep Chatterji On behalf of CBM-STS Collaboration GSI Helmholtz Centre.
Punch through protection and p-stop ion concentration in HPK strip mini-sensors Jan Bohm, Institute of Physics ASCR, Prague Peter Kodys, Pavel Novotny,
EUDET FP7 brainstorm EUDET-JRA2 Jan Timmermans. My personal opinion…. I would be in favour of waiting till next call Because “grand” particle physics.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Distortion of the CV characteristics by a high current A.Chilingarov, Lancaster University, UK Vidyo meeting
IH2655 Seminar January 26, 2016 Electrical Characterization,B. Gunnar Malm
A novel two-dimensional microstrip sensor for charge division readout D. Bassignana, M. Lozano, G. Pellegrini CNM-IMB (CSIC) M. Fernández, R. Jaramillo,
A novel two-dimensional microstrip sensor with charge division readout M. Fernández, R. Jaramillo, F.J. Muñoz, I. Vila IFCA (CSIC-UC) D. Bassignana, M.
Static Surface Charges on Differently Passivated Silicon Strip Sensors Axel König, HEPHY11 th Trento Workshop, LPNHE Paris.
ADC values Number of hits Silicon detectors1196  6.2 × 6.2 cm  4.2 × 6.2 cm  2.2 × 6.2 cm 2 52 sectors/modules896 ladders~100 r/o channels1.835.
Best 3 Applications Involving in Zener Diode Working Functionality.
25 April 2013 Thomas Bergauer (HEPHY Vienna) Components and ladder quality control and testing procedures Belle II Vienna-Pisa meeting.
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
Electrical Tests of Modules and Ladders Markus Friedl (HEPHY Vienna) 2 October 2014.
QA Tests Tests for each sensor Tests for each strip Tests for structures Process stability tests Irradiation tests Bonding & Module assembly Si detectors1272.
Rint Simulations & Comparison with Measurements
Karlsruhe probe equipment and QA proposals/expertise
Axel König, HEPHY Vienna
I. Rashevskaya on behalf of the Slim5 Collaboration, Trieste Group
Electrical Properties of MPPC/SiPM/GMAPD’s
Pulse Processing and Shaping
Irradiation and annealing study of 3D p-type strip detectors
SuperB SVT Silicon Sensor Requirements
Overview Time structure of leakage currents
CORRELATION BETWEEN LEAKAGE CURRENT AND NOISE
Presentation transcript:

Paul Dolejschi Characterisation of DSSD interstrip parameters BELLE II SVD-PXD Meeting

Characterisation of DSSD interstrip parameters 2Paul Dolejschi Paul Dolejschi QTC-Setup switching-system LCR-meter (measurement of capacitance) 2 SMUs (Bias-Voltage, Resistance) electrometer (current) needles, chuck, table LabView-software Completley automated setup

Characterisation of DSSD interstrip parameters 3Paul Dolejschi What have we tested? Global parameters: –IV-Curve: Dark current, Breakthrough –CV-Curve: Depletion voltage, Total Capacitance Strip Parameters e.g. –strip leakage current I strip –poly-silicon resistor R poly –coupling capacitance C ac –dielectric current I diel 3

Characterisation of DSSD interstrip parameters 4Paul Dolejschi Switching Scheme (Vienna) 4

Characterisation of DSSD interstrip parameters 5Paul Dolejschi Paul Dolejschi Validation of oxide thickness SEM result: 355nmaverage from C_ac measurement: nm Micron average: metal layer implant oxide

Characterisation of DSSD interstrip parameters 6Paul Dolejschi Interstrip measurements Interstrip Capacitance –Comparison of Frequency dependent measurements on Hamamatsu barrel sensors CMS-test structure Interstrip Resistance –Hamamatsu Barrel sensors 4 batches –Micron Wedge sensors 2 batches, p-stop/p-spray

Characterisation of DSSD interstrip parameters 7Paul Dolejschi Interstrip Capacitance Capacitance between –Implants (p + /n + ) Charge Sharing –Metal layers (Al) Cross Talk, Signal to noise –Metal layer and implant (AC coupling) Separates strip leakage current from readout electronics → Electrical Network!

Characterisation of DSSD interstrip parameters 8Paul Dolejschi Interstrip Capacitance Different measurement methods –Contacting Implants only (via DC pads) –Contacting metal layer only (via AC pads) –Contacting both implants and metal layer Additional option: Measuring 1, 2 or 4 neighbouring strips Slightly different result for each method and/or sensor type –AC or DC coupled structures, different strip length, bias- resistor,… –Try to distinguish different contributions of capacitances, restistors etc…

Characterisation of DSSD interstrip parameters 9Paul Dolejschi Frequency dependent interstrip capacitance measurement LCR-meter measures impendance and phase at the same time and then computes capacitance with chosen equivalent circuit.

Characterisation of DSSD interstrip parameters 10Paul Dolejschi Comparison of different measurement types Strip length 12cm

Characterisation of DSSD interstrip parameters 11Paul Dolejschi Comparison of different measurement types Strip length 1cm

Characterisation of DSSD interstrip parameters 12Paul Dolejschi Influence of polysilicon resistor High pass filter

Characterisation of DSSD interstrip parameters 13Paul Dolejschi Unknown effect of implants in low frequency region Frequency dependent interstrip capacitance measurement High frequency: no contribution of implants if strips are long Low frequency: no contribution of metal layer because of high pass filter

Characterisation of DSSD interstrip parameters 14Paul Dolejschi Conclusion High Frequencies: –Above a certain frequency only a small length of the implant contributes to the capacitance –The capacitance between the metal layers dominates the observed value when both AC and DC pads are contacted Low Frequencies: –Presence of a polysilicone resistor influences low frequency region  high pass filter for metal layers if R_poly is low –Unknown effect of implants in low frequency region

Characterisation of DSSD interstrip parameters 15Paul Dolejschi Paul Dolejschi Interstrip Resistance - Measurement Principle DC pad #X kept on ground, voltage applied to DC pad #X+1, electromenter measures current on pad #X Don‘t want to measure series connection of poly-resistances R-poly can be measured at the same time Strip X Strip X+1

Characterisation of DSSD interstrip parameters 16Paul Dolejschi Paul Dolejschi Usually five voltage steps, slope of the IV curve represents 1/R Typical ΔI: 5-20pA Typical R_int: GΩ Intersection of R-poly curve at y=0 reveals current of next strip

Characterisation of DSSD interstrip parameters 17Paul Dolejschi Paul Dolejschi Fit fails sometimes (often) failed fit„Fit ok“

Characterisation of DSSD interstrip parameters 18Paul Dolejschi Measurement with 3rd SMU for compensation 18 introduces current for I_strip compensation Keeping electrometer in lowest possible range (200 pA)!

Characterisation of DSSD interstrip parameters 19Paul Dolejschi Paul Dolejschi „Ideal stripscan“ Interstrip resistance and polysilicon resistor measured at same time Value plotted for each strip More than 90% „fit ok“ in this exapmple Measurement success

Characterisation of DSSD interstrip parameters 20Paul Dolejschi Paul Dolejschi Hamamatsu n-sides n-side –Similarity in shape –new measurement method using 3rd SMU for I_strip- compensation (+guarded positioners) - no improvement –Measurement accuracy high enough to measure >1TΩ Similarity between Hamamatsu sensors (all 4 batches) Independent of „direction“ of stripscan HPK #4 HPK #80

Characterisation of DSSD interstrip parameters 21Paul Dolejschi Hamamatsu n-sides The higher the strip number, the higher the resistance „mean dI“: –after the voltage is applied, it takes some time (sec) until current is stable –Difference between first and final value = „mean dI“ –Can be positive or negative –„responsible“ for higher resistance? current

Characterisation of DSSD interstrip parameters 22Paul Dolejschi Hamamatsu n-sides ~50% „Fit ok“

Characterisation of DSSD interstrip parameters 23Paul Dolejschi Hamamatsu n-sides ~50% „Fit ok“

Characterisation of DSSD interstrip parameters 24Paul Dolejschi Hamamatsu n-sides ~96% „Fit ok“

Characterisation of DSSD interstrip parameters 25Paul Dolejschi Other frequently onserved effects Mainly on Micron p- side s „Fit ok“ below 5% (averaged over all sensors from same batch) Well reproduceable

Characterisation of DSSD interstrip parameters 26Paul Dolejschi Statistics

Characterisation of DSSD interstrip parameters 27Paul Dolejschi Conclusion The overall detector performances (dark current, depletion voltage, radiation hardness,…) are ok, but interstrip resistance measurement is not fully understood –Reproducable effects on Hamamatsu n-sides and Micron p-sides –Improvement with growing batch number –Measurement impossible on noisy strips –Effects possibly caused by pn-junction effects, simulation required