Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
Dust Formation in Extreme Astronomical Objects Takaya Nozawa Kavli IPMU, Univeristy of Tokyo ( ➔ moving to the theory group of NAOJ from this April) 2014/03/14.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
高赤方偏移クェーサーの 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift quasars: integrating large amounts of dust and unusual extinction curves)
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT) In collaboration with A. Bressan (SISSA), P. Marigo (UNIPD) & L. Danese.
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
超新星とダスト 2015/12/17 Contents: - Introduction (10 min) - Current issues on dust formation in SNe (20 min) - Our recent work on SN-origin presolar grains.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
(National Astronomical Observatory of Japan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
超新星ダストのサイズ分布 2016/02/12 Contents: - Introduction - Dust formation in supernovae (SNe) - Dust destruction by SN reverse shocks - Observations of dust size.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
ALMA observations of Molecules in Supernova 1987A
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
Presolar Grains & Meteorites
Presolar Grains Bulk of material in the solar system is a mixture from a large number of stellar source---mixing in interstellar medium or during solar.
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Kavli IPMU, University of Tokyo
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Origin and Nature of Dust Grains in the Early Universe
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Department of Terrestrial Magnetism Carnegie Institution of Washington
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa, 2015, ApJ, 811, L39) 野沢 貴也( Takaya Nozawa ) 国立天文台 理論研究部 (National Astronomical Observatory of Japan) 2015/12/10

1-1. Summary of observed dust mass in CCSNe missing cold dust? There are increasing pieces of evidence that massive dust in excess of 0.1 M sun is formed in the ejecta of SNe Type II-P SNe young SNRs swept-up IS dust? Matsuura+2011 Balow+2010 Gomez+2012

1-2. Formation and processing of dust in SNe Nozawa 2014, Astronomical Herald Destruction efficiency of dust grains by sputtering in the reverse shocks depends on their initial size The size of newly formed dust is determined by physical condition (gas density and temperature) of SN ejecta

○ Presolar grains ‐ discovered in meteorites ‐ showing peculiar isotopic compositions (highly different from the solar system’s materials) ‐ thought to have originated in stars before the Sun was formed ➜ offering key information on nuclear processes in the parent stars red giants, AGB stars, supernovae, novae … ‐ mineral composition graphite, nanodiamond, TiC, SiC, Si 3 N 4, Al 2 O 3, MgAl 2 O 4, TiO 2, Mg 2 SiO 4, MgSiO 3 … 1-3. Presolar grains Al 2 O 3 (Nittler+1997) SiC (Nittler 2003) graphite (© Amari)

○ Oxygen isotopic composition of presolar oxide grains 1-4. Isotopic composition of presolar oxides Group 1 RGs Clayton & Nittler 2004 Group 2 AGB stars Group 3 / 4 unspecified or SNe? SNe A few particles of presolar Al 2 O 3 grains with radii > 0.25 µm are believed to have been produced in the ejecta of SNe Choi+1998 presolar Al 2 O 3 grains

○ Evidence for Al 2 O 3 formation in SNe ‐ Infrared spectra of Cassiopeia A (Cas A) SNR ➜ Al 2 O 3 is one of the main grain species (Douvion et al. 2001; Rho et al. 2008) 〇 Dust formation calculations ‐ the first condensate among oxide ➜ sizes of Al 2 O 3 grains : < ~0.03 µm (e.g., Nozawa+2003; Todini & Ferrara+2001) 1-5. Why we focus on presolar Al 2 O 3 grains? Douvion+2001 Nozawa+2007 Nozawa+2003 destruction in SNRs

○ One-dimension (1-D) SN models ‐ relatively smooth density profile ➜ low number density of Al atoms ‐ SN ejecta must be inhomogeneous ➜ dust formation would proceed in gases with a variety of densities 1-6. Why the calculated size of Al 2 O 3 is small? Nozawa+2003

〇 Question What is the formation condition of sub-µm-sized presolar Al 2 O 3 grains identified as the SN-origin? 1-7. Aim of this talk 〇 Aim We investigate the condensation of Al 2 O 3 grains for wide ranges of gas density and cooling rate.

〇 Supersaturation ratio, S ➔ ratio of partial pressure P 1 to equilibrium partial pressure P Supersaturation ratio For condensation of dust, S = P 1 / P 0 1 > 1 ➔ lnS = ln(P 1 / P 0 1 ) > 0 gaseous atom solid (bulk) material lnS is higher for lower T and higher c 1 P01P01 c1c1 P1P1 T dust is assumed to equal to T=T gas

2-2. Concept of nucleation theory c1c1 c (n) JnJn J2J2 J3J3 ・ master equations α n-1 c 1 c n-1 βncnβncn c (2) c (3)

2-3. Dust formation calculations (Nozawa & Kozasa 2013) 〇 Master equations of cluster formation 〇 Equation of grain growth n * = 100 where μ = 4πa 0 2 σ / kT σ : surface tension growth rate is independent of grain radius

2-4. Model of calculations for Al 2 O 3 formation ## condensation efficiency, f con : ## a fraction of Al atoms that are locked up in dust grains 〇 Time evolution of gas density (free expansion) 〇 Time evolution of gas temperature Parameters: - c_{Al,0} = cm -3 (initial number density of Al atoms) - γ = (cooling rate) - t_0 = 300 day (fixed) t_0 : the time at which lnS = 0 (S = 1) c_0 : number density of Al atom at t_0 T_0 : gas temperature at t_0 γ: adiabatic constant

3-1. Size distribution of newly formed grains ‐ Size distribution of newly formed grains is lognormal-like with a narrower width for a higher gas density ‐ Average grain radius increases with increasing c_{Al,0} ➜ a higher gas density leads to more efficient growth of grains c_{Al,0} should be higher than ~5x10 8 cm -3 for the formation of Al 2 O 3 grains with radii larger than ~0.25 µm (diameter of 0.5 µm)

3-2. Scaling relation for f con,∞ and a ave,∞ Λ on = τ sat /τ coll : ratio of supersaturation timescale to gas collision timescale at the onset time (t on ) of dust formation Λ on = τ sat /τ coll ∝ τ cool n gas ・ f con,∞ and a ave,∞ are uniquely determined by Λ on ## this is true for the formation of carbon and silicate grains

3-3. Formation condition of presolar Al 2 O 3 Submicron-sized presolar Al 2 O 3 grains identified as SN-origin were formed in dense clumps in the ejecta Λon > 30,000 required ➜ at least 10 times higher gas density than those predicted by 1-D SN models normal SNe 1-D model

3-4. Newly formed grains can survive in SNR? Model of the calculation: M SN = (3 + 12) M sun, E exp =1.8x10 51 erg, n ISM = 1 cm -3 Evolution of dust in SNRs depends on the initial radii - a ini < 0.01 μm ➔ completely destroyed μm < a ini < 0.1 μm ➔ eroded in dense shell - a ini > 0.1 μ m ➔ injected into the ISM

4. Summary of this talk We investigate the formation of Al 2 O 3 grains for a variety of densities and cooling rates of the gas. 1) The average radius and condensation efficiency of newly formed Al 2 O 3 grains are uniquely described by the non-dimensional quantity Λ on. 2) Presolar Al 2 O 3 grains with radii above 0.25 µm can be formed only in the gas with more than 10 times higher density than those estimated by 1-D SN models. ➜ indicating the presence of dense clumps in the SN ejecta 3) The measured sizes of presolar grains are powerful probes for constraining the physical conditions and structure in which they formed.