Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 TTCS simulation status report SYSU: S.S.Lv, D.C. Mo, Z.C. Huang, Z.H. He NLR:

Slides:



Advertisements
Similar presentations
Moving in the right circles
Advertisements

1 Ann Van Lysebetten CO 2 cooling experience in the LHCb Vertex Locator Vertex 2007 Lake Placid 24/09/2007.
Are You Smarter Than a 5 th Grader? Are You Smarter Than a ? th Grader? 1,000,000 5th Level Topic 1 5th Level Topic 2 4th Level Topic 3 4th Level Topic.
1 Nikhef Activities on CO 2 Cooling Bart Verlaat, Nikhef Introduction meeting with FOM director W. van Saarloos 1 Picture: LHCb-VELO evaporator.
1 Feasibility Demonstration of a Mechanically Pumped Two-Phase CO 2 Cooling Loop for the AMS-2 Tracker Experiment Conference on Thermophysics in Microgravity.
SIZING MODELS AND PERFORMANCE ANALYSIS OF WASTE HEAT RECOVERY ORGANIC RANKINE CYCLES FOR HEAVY DUTY TRUCKS (HDT) Ludovic GUILLAUME 1 & co-workers : A.
WP 3: Thermal System Strictly Confidential 1 Workpackage 3: Thermal System Project Meeting, May 11, 2006.
1 New baseline for the magnet cooling system Yury Ivanyushenkov Engineering and Instrumentation Department, Rutherford Appleton Laboratory.
Feedback from Momentum-Driven Winds Eliot Quataert (UC Berkeley) w/ Norm Murray & Todd Thompson NGC 3079 w/ HST.
AMS-02 Delta CDR Thermal. Overview Changing from Cryomagnet to PM greatly simplifies AMS-02 Thermal requirements – Keeping vacuum Case “cold as possible”
IPC Notes: Heat Transfer
Delta Confidential DES UPS introduction UPS training June 2006 Markus Schwab.
Walls. Apply knowledge of thermal mass and insulation with passive design strategies to reduce the energy needed by active systems.
Chapter 22 Heat Transfer.
Thermal Energy Chapter 14. Key Ideas  What does temperature have to do with energy?  What makes things feel hot or cold?  What affects the rate that.
Heat Exchanger & Classification Prepared by: Nimesh Gajjar
Thermal Energy and Matter Chapter 16. Heat Heat is the transfer of thermal energy from one object to another due to a temperature difference – Flows from.
9 March 2004 GIFTS Blackbody Subsystem Critical Design Review Blackbody Controller 9 March 2004 Scott Ellington
1 CO 2 cooling of an endplate with Timepix readout Bart Verlaat, Nikhef LCTPC collaboration meeting DESY, 22 September
Tracker Thermal Control System 2015年9月13日星期日 2015年9月13日星期日 2015年9月13日星期日 1 AMS-TTCS Status Report AMS-TIM meeting, CERN, Oct.28 th, 2008 ZH He On behalf.
Solution to y11 q2 gases  (a)  At 20 o C V 1 =6000cm 3 P constant  At 70 o C V 2 =?  Use the combined gas equation with P canceling out 
Tracker Thermal Control System 1 AMS Tracker Thermal Control System (TTCS) Phase II Safety Presentation SRII meeting, 21 May 2007, Houston Johannes van.
Tracker Thermal Control System 1 AMS Tracker Thermal Control System (TTCS) TTCS Design Description NLR-team: J. van Es, M.P.A.M. Brouwer, B. Verlaat (NIKHEF),
1 Hi-Lumi WP3 meeting Update on the Q1 to D1 cryostat Jan 28, 2014  Outline  Cryostat cross section options  Elliptical interconnect.
IHEP 1.3 GHz Cryomodule and Cryogenics IHEP Cryogenic group 2nd Workshop of the IHEP 1.3 GHz SRF R&D Project Dec 2 nd, 2009.
Tracker Thermal Control System TTCS Progress at Sun Yat-sen University Feb. 1, 2006, CERN Geneva Modeling: SS Lu, ZC Huang, DQ Mo, Y Chen EM test: TX Li,
Thermal Energy & Heat. Temperature Measure of how hot or cold something is compared to reference point Units: –Celsius –Fahrenheit –Kelvin.
Thermal Energy and Heat
JCOV, 25 OCT 2001Thermal screens in ATLAS Inner Detector J.Godlewski EP/ATI  ATLAS Inner Detector layout  Specifications for thermal screens  ANSYS.
26 May 2010Hans Postema - CERN Status and plan for the development and construction of CO2 Cooling System for Pixel Upgrade 1.
Perito Moreno Glacier Perito Moreno Glacier 二○一五年十月二十七日星期二.
Hall D Target System Review J. FochtmanSeptember 28,2011 Preliminary Design Work.
Page 1 Petten 27 – Feb ALFRED and ELFR Secondary System and Plant Layout.
Matter, States of Matter, Gas Laws, Phase Changes, and Thermal Energy.
C.KotnigFCC Design Meeting FCC Beam Screen cooling Claudio Kotnig.
1 RQ7000M High Speed Automatic machine for Fishing and Marine industry 24-Nov,2010.
Dimensions, pressures and temperatures of cryogenic circuits for the SPL U. Wagner TE-CRG.
PHASE II FLIGHT-SAFETY REVIEW AMS-02 EXPERIMENT sub-detector SILICON TRACKER Roberto Battiston - AMS-02 Phase II Safety Review - Houston JSC May 21-25,
CO 2 Controlling a 2-phase CO2 loop using a 2-phase accumulator
Solar Orbiter EUS: Thermal Design Progress Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Progress Bryan.
Cryogenic refrigeration for the XFEL facility. Current status of the commissioning. Wilhelm Hanspeter Grenoble, June 4th, 2015.
Cryogenic Cooling Schemes for the SPL U. Wagner TE-CRG.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow.
Heat Transfer Conduction, Convection, Radiation. Conduction Heat energy can be transferred from one substance to another when they are in direct contact.
Convection Currents and the Mantle. The Heat of the Earth Earth’s outer core is nearly as hot as the surface of the sun.
High Granularity Calorimeter Workshop Ideas for cooling of a high granularity calorimeter Nick Lumb, IPN-Lyon 02/02/2015.
Cryogenics for SuperB IR Magnets J. G. Weisend II SLAC National Accelerator Lab.
Activator Define heat in your own words.. Heat Transfer SPS7. b. Investigate molecular motion as it relates to thermal energy changes in terms of conduction,
ESS | Helium Distribution | | Torsten Koettig Linac – Helium distribution 1.
Michael A. Green and Heng Pan
Status of Cooling Development in Karlsruhe
Design of the thermosiphon Test Facilities 2nd Thermosiphon Workshop
Presentation by James and Hina
Heat Energy.
Tracker cooling loop “check out” draft for discussion
A.M.Villavan Sai Lalith Rohit K.Anudeep
FP420 Detector Cooling Thermal Considerations
CRYOGENICS OPERATIONS 2008 Organized by CERN
Thermal Energy and Matter
Atlas Calorimeter with LN2 Cooling Loops, Revision B
CO2 Cooling IPNL Nick Lumb, 28/01/09.
Natural Convection New terms Volumetric thermal expansion coefficient
Thermal Simulation Discussion
Cooling aspects for Nb3Sn Inner Triplet quadrupoles and D1
Atlas Calorimeter with LN2 Cooling Loops
Cryogenic System Commissioning Summary Report
Ch 16 Thermal Energy and Heat 16.1 Thermal Energy and Matter
12. Heat Exchangers Chemical engineering 170.
Rui Wang, Gequn Shu, Hua Tian, Xuan Wang*
Presentation transcript:

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 TTCS simulation status report SYSU: S.S.Lv, D.C. Mo, Z.C. Huang, Z.H. He NLR: E. van Johannes, P.Aswin CGS: C.Vettore, M.Molina

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Outline Status of TTCS modeling Simulation result –Cold orbit result –Hot orbit result Summary

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Status of TTCS modeling Modified and debugged the cmdv1.3 (combined model draft version 1.3) –Reversed the flow direction –Considered the contact conductance between the heatpipe and the facesheet of the radiator –Modified the thermal link of peltier –IF data debugged etc.

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Reverse the flow direction

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Contact conductance between the face sheet and HP Outside facesheet5xxxx ROHACELLHP6xxxx Inside facesheet7xxxx Condenser9xxxx MLI10xxxx Layers of the radiator R56`=8.27E4W/K  R56=181W/K R67`=3.07E5W/K  R67=188W/K R79`=171W/K  R79=209W/K

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Cases selected for simulation Beta AngleSuggested Env Screening rank TTCB-PTTCB-SRam Rad Peak Ram Rad Avg Wake Rad Peak Wake Rad Avg Rad Avg Delta T hotH1H5H hotH coldC coldC6C coldC9C1

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Results of cold cases

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Cold case1: BYPR= Tset=258K FR=2g/s Cold orbit heaters Pre-heaters

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Cold case2: BYPR= _0+15 Cold orbit heaters Tset=258K FR=2g/s

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Cold case3: BYPR= -75_0_0-15 Tset=258K FR=2g/s

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Comparison of the cold orbit results Cases BYPR Subcooling(K) cold orbit heater duty cycle ~15.851% _ ~19.967% -75_0_ ~18.946%

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Summary for cold case The result of the cmdv1.3 shows that a power of 40W for the cold orbit heaters should be enough for keeping the loop running in the extreme cold cases.

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Hot cases

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 BYPR= subcoolings Tset=293K FR=2g/s

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 BYPR= phase

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 BYPR= Tset=293K FR=4g/s Pre-heaters

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Summary of the hot cases In the extreme hottest cases, TTCS loop is running with little sub cooling. Proposed solutions and impacts –Higher the set point –Higher the mass flow rate Higher pressure drop of the loop (up to 1600mbar) Higher the pre-heater power

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Future work Building and debugging the TTCS v1.0 –modified the length and volume to the latest loop layout –More reliable accumulator model. Involving of the tracker people in modeling is started, and to be strengthened.

Tracker Thermal Control System 2016年3月10日星期四 2016年3月10日星期四 2016年3月10日星期四 Thank you