LIGO-G030493-00-E Data Simulation for the DMT John Zweizig LIGO/Caltech.

Slides:



Advertisements
Similar presentations
LIGO-G Z Update on the Analysis of S2 Burst Hardware Injections L. Cadonati (MIT), A. Weinstein (CIT) for the Burst group Hannover LSC meeting,
Advertisements

LIGO- G Z August 19, 2004August 2004 LSC Meeting 1 Towards an Astrophysics-Based Burst ETG Tuning Keith Thorne Penn State University Relativity.
Chapter 6 Information Theory
1 Databases in ALICE L.Betev LCG Database Deployment and Persistency Workshop Geneva, October 17, 2005.
Reconstruction and Analysis on Demand: A Success Story Christopher D. Jones Cornell University, USA.
Burst detection efficiency  In order to interpret our observed detection rate (upper limit) we need to know our efficiency for detection by the IFO and.
Descriptive statistics Experiment  Data  Sample Statistics Experiment  Data  Sample Statistics Sample mean Sample mean Sample variance Sample variance.
Random Variables November 23, Discrete Random Variables A random variable is a variable whose value is a numerical outcome of a random phenomenon.
Noise Floor Non-stationarity Monitor Roberto Grosso*, Soma Mukherjee + + University of Texas at Brownsville * University of Nuernburg, Germany Detector.
Page67.m page69.m page72_Gaussian.m.
LIGO- G Z AJW, Caltech, LIGO Project1 Use of detector calibration info in the burst group
LIGO-G0200XX-00-M DMT Monitors: Beyond the FOM John Zweizig LIGO/Caltech LLO August 18, 2006.
Control and monitoring of on-line trigger algorithms using a SCADA system Eric van Herwijnen Wednesday 15 th February 2006.
New Features of APV-SRS-LabVIEW Data Acquisition Program Eraldo Oliveri on behalf of Riccardo de Asmundis INFN Napoli [Certified LabVIEW Developer] NYC,
LSC Meeting, 17 March 2004 Shawhan, Marka, et al.LIGO-G E Summary of E10 / S3 Hardware Signal Injections Peter Shawhan, Szabolcs Márka, Bruce.
CLEO’s User Centric Data Access System Christopher D. Jones Cornell University.
LIGO-G E ITR 2003 DMT Sub-Project John G. Zweizig LIGO/Caltech Argonne, May 10, 2004.
G R AJW, Caltech, LSC Meeting, 3/20/02 Discussion of Statistical Methods, Tools, and Simulations  Review of tools and methods  (I am only familiar.
LIGO-G Z Coherent Coincident Analysis of LIGO Burst Candidates Laura Cadonati Massachusetts Institute of Technology LIGO Scientific Collaboration.
DAQ_HowTo_ ppt1 How to use DAQ for Argonne Beam Test Tsunefumi Mizuno November 07, 2003 History.
LIGO- G Z AJW, Caltech, LIGO Project1 Use of detector calibration info in the burst group
New data analysis for AURIGA Lucio Baggio Italy, INFN and University of Trento AURIGA.
Testing Session Testing Team-Release Management Team.
LIGO-G Z 18 March 2004Penn State University1 GravEn Simulation Engine Amber L. Stuver
Data Characterization in Gravitational Waves Soma Mukherjee Max Planck Institut fuer Gravitationsphysik Golm, Germany. Talk at University of Texas, Brownsville.
Normal distribution and intro to continuous probability density functions...
LIGO-G9900XX-00-M ITR 2003 DMT Sub-Project John G. Zweizig LIGO/Caltech.
Databases E. Leonardi, P. Valente. Conditions DB Conditions=Dynamic parameters non-event time-varying Conditions database (CondDB) General definition:
Summary of the First Database Survey J.N. Butler Oct. 11, 2001.
JANA and Raw Data David Lawrence, JLab Oct. 5, 2012.
A Technical Validation Module for the offline Auger-Lecce, 17 September 2009  Design  The SValidStore Module  Example  Scripting  Status.
Clara Gaspar, March 2005 LHCb Online & the Conditions DB.
LHCb Software Week November 2003 Gennady Kuznetsov Production Manager Tools (New Architecture)
OPERATING SYSTEMS CS 3530 Summer 2014 Systems with Multi-programming Chapter 4.
Probability Refresher COMP5416 Advanced Network Technologies.
G030XXX-00-Z Excess power trigger generator Patrick Brady and Saikat Ray-Majumder University of Wisconsin-Milwaukee LIGO Scientific Collaboration.
LSC Meeting, 19 March 2003 Shawhan, Leonor, MarkaLIGO-G D Introduction to Hardware Signal Injections Peter Shawhan, Isabel Leonor, Szabi Márka.
1 A first look at the KEK tracker data with G4MICE Malcolm Ellis 2 nd December 2005.
NSF Review, 18 Nov 2003 Peter Shawhan (LIGO/Caltech)1 How to Develop a LIGO Search Peter Shawhan (LIGO / Caltech) NSF Review November 18, 2003 LIGO-G E.
3/21/06G D S4/S5 Calibration Status Brian O’Reilly For the Calibration Committee LSC March 2006 Brian O’Reilly For the Calibration Committee LSC.
MNP1163/MANP1163 (Software Construction).  Minimizing complexity  Anticipating change  Constructing for verification  Reuse  Standards in software.
May 29, 2006 GWADW, Elba, May 27 - June 21 LIGO-G0200XX-00-M Data Quality Monitoring at LIGO John Zweizig LIGO / Caltech.
S.Klimenko, LSC, August 2004, G Z BurstMon S.Klimenko, A.Sazonov University of Florida l motivation & documentation l description & results l.
S.Klimenko, G Z, March 20, 2006, LSC meeting First results from the likelihood pipeline S.Klimenko (UF), I.Yakushin (LLO), A.Mercer (UF),G.Mitselmakher.
S.Klimenko, March 2003, LSC Burst Analysis in Wavelet Domain for multiple interferometers LIGO-G Z Sergey Klimenko University of Florida l Analysis.
LIGO-G Z GWDAW9 December 17, Search for Gravitational Wave Bursts in LIGO Science Run 2 Data John G. Zweizig LIGO / Caltech for the LIGO.
Summary of User Requirements for Calibration and Alignment Database Magali Gruwé CERN PH/AIP ALICE Offline Week Alignment and Calibration Workshop February.
LIGO-G All-Sky Burst Search in the First Year of the LSC S5 Run Laura Cadonati, UMass Amherst For the LIGO Scientific Collaboration GWDAW Meeting,
Results From the Low Threshold, Early S5, All-Sky Burst Search Laura Cadonati for the Burst Group LSC MIT November 5, 2006 G Z.
Quality assurance for TPC. Quality assurance ● Process: ● Detect the problems ● Define, what is the problem ● What do we expect? ● Defined in the TDR.
LSC Meeting, 10 Nov 2003 Peter Shawhan (LIGO/Caltech)1 Inspiral Waveform Consistency Tests Evan Ochsner and Peter Shawhan (U. of Chicago) (LIGO / Caltech)
LIGO- G Z AJW, Caltech, LIGO Project1 A Coherence Function Statistic to Identify Coincident Bursts Surjeet Rajendran, Caltech SURF Alan Weinstein,
DAQ Errors John Zweizig LIGO/Caltech LSC Analysis Meeting Tufts June 6, 2004.
LIGO-G Z TFClusters Tuning for the LIGO-TAMA Search Patrick Sutton LIGO-Caltech.
LIGO-G050197LSC Collab. Mtg, LHO, August 16,20051 S4 Data Quality & S5 Preview John Zweizig LIGO/Caltech.
LIGO-G9900XX-00-M DMT Monitor Verification with Simulated Data John Zweizig LIGO/Caltech.
Online DQ Segments and Triggers John Zweizig LIGO/Caltech.
LIGO-G E S2 Data Quality Investigation John Zweizig Caltech/LIGO.
S.Klimenko, LSC meeting, March 2002 LineMonitor Sergey Klimenko University of Florida Other contributors: E.Daw (LSU), A.Sazonov(UF), J.Zweizig (Caltech)
MET Slice Monitoring Xiaowen Lei, Venkat Kaushik Ken Johns.
Authors: Dmitrii Pereima, ITEP; Dmitry Golubkov, ITEP; Iouri Gouz, IHEP; Victor Egorychev, ITEP. Visualization of HCAL 137 Cs calibration data 1 CALO +
4 Dec., 2001 Software Week Data flow in the LArG Reconstruction software chain Updated status for various reconstruction algorithm LAr Converters and miscellaneous.
1 GlueX Software Oct. 21, 2004 D. Lawrence, JLab.
Data Quality Investigation LIGO-G E John Zweizig Caltech/LIGO Liivingston, March 18, 2003.
LIGO-G E S2/S3 Data Quality Flagging John G. Zweizig LIGO/Caltech.
ATLAS Detector Resources & Lumi Blocks Enrico & Nicoletta.
Gu Minhao, DAQ group Experimental Center of IHEP February 2011
Random Variables and Probability Distribution (2)
WaveMon and Burst FOMs WaveMon WaveMon FOMs Summary & plans
E370 Statistical analysis for bus & econ
Presentation transcript:

LIGO-G E Data Simulation for the DMT John Zweizig LIGO/Caltech

LIGO-G E Purpose Generate data in the form of frame files to: Debug DMT monitor code Measure monitor performance/efficiency Compare performance of different algorithms Tune parameters Generate injection functions? Astrophysical simulation?

LIGO-G E Generator Structure

LIGO-G E Data Sources Continuous distributions » Gaussian noise » Sinusoid » Recorded data (from frame) Discrete events » May have the following functional forms – Sine-gaussian: x(t) = Asin(  t +  ) e -t²  ²/Q² – Damped sinusoid: x(t) = Asin(  t +  ) e -t  /Q – Gaussian burst: x(t) = A  t e -t²/  ² » Generated in time according to – Fixed probability per time interval – Constant time steps – Once only

LIGO-G E Data Source Parameters Data source distribution parameters may be » Constant (string or number) » Fixed steps » Random distributions – exp(b,min,max): P(x) ~ e -x/b (min < x < max) – flat(min,max): P(x) ~ 1 (min < x < max) – gauss( , x o ): P(x) ~ e -(x-x o )²/2  ² – power(n,min,max): P(x) ~ x n (min < x < max)

LIGO-G E Generator Class Holds source, channel databases Generates data by calling data source classes and summing appropriate data into channels Typical usage » Construct Generator » Define sources » Define channels from component sources, filters and DAQ filter » Generate data in a specific a time interval » Get data source or channel contents

LIGO-G E DMTGen Stand-alone program » Reads ASCII configuration » Constructs generator class » Generates data » Writes frames – FrAdcData for each defined channel – FrSimData as requested for data sources

LIGO-G E Running DMTGen Configuration file (genSG+FD.cfg) # # DMTGen configuration for a Sine-gaussian plus recorded AS_Q # Parameter StartGPS Parameter EndGPS Filter hp100 Design ellip('HighPass',4, 1, 60,100) Source SG \ SinGauss(A=power(2,2),F=100,Q=10,Phi=flat(0,360)) \ -rate 1.0 -simdata Source FD \ FrameData(Files=/usr1/store/S2/LLO/L-R-72976*.gwf,Channel=L1:LSC-AS_Q) Channel L1:LSC-AS_Q SG FD|hp100 Running DMTGen DMTGen -conf genSG+FD.cfg

LIGO-G E Status of DMTGen Basic program written, available with release of DMT (now tagged in cvs). Still needs: » Complete documentation » Standard filters for: calibration, ifo response and DAQ response » Histogramming random parameters. » Detector specification » More data source definitions: e.g. astrophysical sources?, tabulated waveform in xml, etc.