P ROBING THE MAGNETIC FIELD OF 3C 279 by Sebastian Kiehlmann on behalf of the Quasar Movie Project team Max Planck Institute for Radio Astronomy, Auf dem.

Slides:



Advertisements
Similar presentations
Optical monitoring and time delay determination in the gravitationally lensed quasar UM673 E. Koptelova (1,2), V. Oknyanskij (2), B. Artamonov (2), W.-P.
Advertisements

Connection between the parsec-scale radio jet and γ-ray flare in the blazar Venkatessh Ramakrishnan Aalto University Metsähovi Radio Observatory,
Kinematic Studies of the IDV Quasar S. Bernhart T. P. Krichbaum L. Fuhrmann Max-Planck-Institut fϋr Radioastronomie, Bonn.
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulos (advisor), UMBC/GSFC Eileen Meyer,
Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
Method To determine the multiplicity parameter and the magnetization parameter  one can use the dependence on the visible position of the core of the.
Constraints on Blazar Jet Conditions During Gamma- Ray Flaring from Radiative Transfer Modeling M.F. Aller, P.A. Hughes, H.D. Aller, & T. Hovatta The γ-ray.
Time Variable Linear Polarization as a Probe of the Physical Conditions in the Compact Jets of Blazars Alan Marscher Institute for Astrophysical Research,
Study on polarization of high- energy photons from the Crab pulsar 〇 J. Takata (TIARA-NTHU/ASIAA,Taiwan) H.-K. Chang (NTH Univ., Taiwan) K.S. Cheng (HK.
1 Recollimation Shock, Transverse Waves and the Whip in BL Lacertae M.H. Cohen Caltech Granada 13 vi 2013.
Mehreen Mahmud Denise Gabuzda University College Cork, Ireland Searching for Helical Magnetic Fields in Several BL Lac Objec ts.
Multicolor Microvariability Observations of BL Lac Object: 1ES Whitney Wills Advisor: Michael Carini Western Kentucky University.
A Polarization Study of the University of Michigan BL Lac Object Sample Askea O'Dowd 1, Denise Gabuzda 1, Margo Aller University College Cork 2 -
Photopolarimetric monitoring of 41 blazars in optical and near-infrared bands with KANATA telescope (Flux, Color, Polarization) fermi symposium.
Compact Radio Structure of the High-Redshift BL Lac Object Valeriu Tudose 1,2, Denise C. Gabuzda 3, Alina-Catalina Donea 4,2 1 “Anton Pannekoek”
Acknowledgments This work is supported by a Basic Research Grant from Science Foundation Ireland. The VLBA is operated by the National Radio Astronomy.
Kinematics of Jets of Gamma-Ray Blazars from VLBA Monitoring at 43 GHz Svetlana Jorstad Boston University, USA St.Petersburg State University, Russia VLBA.
Modeling Variability of Blazar Jets with a Turbulent Magnetic Field Alan Marscher Institute for Astrophysical Research, Boston University Research Web.
Svetlana Jorstad Connection between X-ray and Polarized Radio Emission in the Large-Scale Jets of Quasars.
Multi-Wavelength Time Variability of Active Galactic Nuclei Ritaban Chatterjee Advisor: Prof. Alan P. Marscher Collaborators: Svetlana Jorstad (B.U.),
Pu, Hung-Yi Institute of Astronomy, National Tsing-Hua University The Effects of Photon Path Bending on the Observed Pulse Profile and Spectra of Surface.
The multi-wavelength polarization VLBI structure of 3 BL Lacertae objects Vladislavs Bezrukovs, Dr. Denise Gabuzda EVN 8 th Symposium 26 – 29 September,
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Multi-Wavelength Time Variability of Active Galactic Nuclei Ritaban Chatterjee Advisor: Prof. Alan P. Marscher Collaborators: Svetlana Jorstad (B.U.),
Multi-Frequency Circular Polarization Measurements of the Quasar 3C279 At Centimeter Wavelengths H.D. Aller and M.F. Aller (U. of Michigan) Introduction.
4/19/2017 7:18 PM Linear and circular radio and optical polarization studies as a probe of AGN physics I. Myserlis E. Angelakis (PhD advisor), L. Fuhrmann,
Stars and Cells Kathy Cooksey Astronomy Overview.
Direct imaging of AGN jets and black hole vicinity Tiziana Venturi Active Galactic Nuclei 9 Ferrara,
An Exceptional Radio Flare in Markarian 421 Joseph L. Richards, Talvikki Hovatta, Matthew L. Lister, Anthony C. S. Readhead, Walter Max-Moerbeck, Tuomas.
Statistical analysis of model-fitted inner-jets of the MOJAVE blazars Xiang Liu, Ligong Mi, et al. Xinjiang Astronomical Observatory (Former Urumqi Observatory),
Institute for Astrophysical Research (Boston University) Iván Agudo 1,2 with the collaboration of S. G. Jorstad 2, A. P. Marscher 2, V. M. Larionov 3,4,
Kinematics of parsec-scale radio jet in 3C48 Tao An 1, In collaboration with X.Y.Hong 1, M.J.Hardcastle 2, T.Venturi 3, D.Worrall 2,T.J.Pearson 4, Z.-Q.Shen.
Multi-waveband Behavior of Blazars Alan Marscher Institute for Astrophysical Research, Boston University Research Web Page:
S. Jorstad / Boston U., USA A. Marscher / Boston U., USA J. Stevens / Royal Observatory, Edinburgh, UK A. Stirling / Royal Observatory, Edinburgh, UK M.
Multiwaveband Opportunities to Study AGN (Mostly Blazars) Detected by Fermi Alan Marscher Boston University, Incoming Chair of Fermi Users Group Research.
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
S. Jorstad / Boston U., USA /St. Petersburg State U., Russia A.Marscher / Boston U., USA M. Lister / Purdue U., USA A. Stirling / U. of Manchester, Jodrell.
Probing the Inner Jet of the Quasar PKS 1510  089 with Multi-waveband Monitoring Alan Marscher Boston University Research Web Page:
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
The MOJAVE Program: Studying the Relativistic Kinematics of AGN Jets Jansky Postdoctoral Fellow National Radio Astronomy Observatory Matthew Lister.
Polarization of AGN Jets Dan Homan National Radio Astronomy Observatory.
Reflection and Refraction A short overview. Plane wave A plane wave can be written as follows: Here A represent the E or B fields, q=i,r,t and j=x,y,z.
THE KINEMATICS OF th EVN SYMPOSIUM N.A. Kudryavtseva 1, S. Britzen 1, J. Roland 2, A. Witzel 1, E. Ros 1, A. Zensus 1, A. Eckart 3.
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
VLBA Imaging of the γ -ray Emission Regions in Blazar Jets or: A Sequence of Images is Worth 1000 Light Curves Alan Marscher Boston University Research.
From the Black Hole to the Telescope: Fundamental Physics of AGN Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory,
Iván Agudo with the collaboration of: S.N. Molina, J. L. Gómez (IAA-CSIC) T. P. Krichbaum, A. Roy, U. Bach (MPIfR) I. Martí Vidal (Chalmers) B. Campbell.
Dependence of the Integrated Faraday Rotations on Total Flux Density in Radio Sources Chen Y.J, Shen Z.-Q.
The Nature of Microvariability in Blazar Gopal Bhatta Department of Physics Florida International University.
Analysis of strong outbursts in selected blazars. Pyatunina T.B., Kudryavtseva N.A., Gabuzda D.C., Jorstad S.G., Aller M.F., Aller H.D., Terasranta H.
Constraining the Location of Gamma-ray Emission in Blazar Jets Manasvita Joshi, Boston University Collaborators: Alan Marscher & Svetlana Jorstad (Boston.
Exploring an evidence of supermassive black hole binaries in AGN with MAXI Naoki Isobe (RIKEN, ) and the MAXI
Magnetic field structure of relativistic jets in AGN M. Roca-Sogorb 1, M. Perucho 2, J.L. Gómez 1, J.M. Martí 3, L. Antón 3, M.A. Aloy 3 & I. Agudo 1 1.
Gabuzda, Murray & Cronin astro-ph/
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
2 Institute for Astrophysical Research (Boston University) Iván Agudo 1,2 1 Instituto de Astrofísica de Andalucía (CSIC) The "Far Distance" Scenario for.
The MOJAVE Program: Investigating Relativistic Jets in AGN Collaborators : M. Cara, N. Cooper, S. Kuchibhotla (Purdue) A. Lankey, N. Mellott, K. O'Brien.
Hydrodynamics of Small- Scale Jets: Observational aspects Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory, Helsinki.
Long-term X-ray Variability in Blazars & its Multiwaveband Context Alan Marscher Boston University Research Web Page: Alan Marscher.
VLBA Observations of Blazars
The RoboPol Optical Polarization Monitoring Program
Double EVPA Rotations in OJ 287
On behalf of the Radio-Agile AGN WG
Spectrally-polarized features of ε Aurigae: In and out of eclipse
From radio to gamma-rays: 3C 273 reveals its multi-component structure
Radio-Optical Study of Double-Peaked AGNs: 3C 390.3
Gamma-ray emission along the radio jet:
Lecture 7: Jets on all scales Superluminal apparent motions.
Shane O’Sullivan University College Cork
Presentation transcript:

P ROBING THE MAGNETIC FIELD OF 3C 279 by Sebastian Kiehlmann on behalf of the Quasar Movie Project team Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, Bonn, Germany

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN i.Polarization of 3C 279 ii.The 180° ambiguity iii.Polarization of 3C 279 iv.Conclusions I

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN II. Polarization of 3C Fig. 1a: Optical, linear polarization degree of 3C 279

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN II. Polarization of 3C Fig. 1b: Optical, linear polarization degree and EVPA of 3C 279 Optical electric vector position angle (EVPA) degree of linear polarization

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN II. Polarization of 3C Fig. 1b: Optical, linear polarization degree and EVPA of 3C 279 objectEVPA rotationtime interval explanationreference OJ °7 d Helical motion in a helical magnetic field Kikuchi et al., 1988 BL Lac240 °5 dMarscher et al., 2008 PKS °50 dMarscher et al., C 279  300 °60 dLarionov et al., C 279  208 °12 dBent jetAbdo et al., 2010 γ- ray flaring

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN Assumption: smooth variation Question: – Valid assumption? – Reliability? III. The 180° ambiguity 4 Fig. 2a: Sketched EVPA curve Fig. 2b: Sketched modified EVPA curve

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN Method 1: III. The 180° ambiguity III.a Smoothing methods 5 Method 2:

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 6 Fig. 4a: Sketched cells of the random walk process

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 7 Fig. 4b: Sketched cells of the random walk process

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 8 Fig. 5a: Random EVPA variation

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 9 Fig. 5b: Random EVPA variation, smoothed 1,000,000 simulations Method 1:Method 2: > 99.5 %> 98.5 % 43 %

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 10 Fig. 5b: Random EVPA variation, smoothed 1,000,000 simulations Method 1:Method 2: > 99.5 %> 98.5 % 43 % 1 %

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 11 Fig. 5c: Random EVPA variation, smoothed, p-t-p variation 1,000,000 simulations Method 1:Method 2: > 99.5 %> 98.5 % 43 % 1 %

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN III. The 180° ambiguity III.c Test 2: assumption of smoothness 12 Fig. 5c: Random EVPA variation, smoothed, p-t-p variation 1,000,000 simulations Method 1:Method 2: > 99.5 %> 98.5 % 43 % 1 %

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN Method 1:Method 2: > 99.5 %> 98.5 % 43 % 0 % 0.1 %0.3 % 76 %98 % 18 °/d15 °/d 1 % III. The 180° ambiguity III.c Test 2: assumption of smoothness 13 Fig. 5c: Random EVPA variation, smoothed, p-t-p variation 1,000,000 simulations

↓ Random walk simulation ↓ ↓ 3C 279 observation (optical) ↓

↓ Random walk simulation ↓ ↓ 3C 279 observation (optical) ↓

↓ Random walk simulation ↓ ↓ 3C 279 observation (optical) ↓

↓ Random walk simulation ↓ ↓ 3C 279 observation (optical) ↓

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN IV. Polarization of 3C 279 IV.a EVPA smoothness 15 Fig. 6a: 3C 279 optical polarization EpochEVPA I↓32(5)no

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 15 Fig. 6b: 3C 279 optical polarization EpochEVPA I↓32(5)no II↑ IV. Polarization of 3C 279 IV.a EVPA smoothness

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 15 Fig. 6c: 3C 279 optical polarization EpochEVPA I↓32(5)no II↑ III↓ IV. Polarization of 3C 279 IV.a EVPA smoothness

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 15 Fig. 6d: 3C 279 optical polarization EpochEVPA I↓32(5)no II↑ III↓ IV↑ IV. Polarization of 3C 279 IV.a EVPA smoothness

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 15 Fig. 6e: 3C 279 optical polarization EpochEVPA I↓32(5)no II↑ III↓ IV↑ V↑ IV. Polarization of 3C 279 IV.a EVPA smoothness

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 15 Fig. 6f: 3C 279 optical polarization EpochEVPA I↓32(5)no II↑ 2-6yes III↓ IV↑ V↑ VI↑ IV. Polarization of 3C 279 IV.a EVPA smoothness

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 15 Fig. 6g: 3C 279 optical polarization EpochEVPA I↓32(5)no II↑ 2-6yes III↓ IV↑ V↑ VI↑ VII↓10.5(8)yes IV. Polarization of 3C 279 IV.a EVPA smoothness

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 16 Fig. 7a: Sketched jet model Fig. 8: 3C 279 LCs (V+R) and opt. pol. IV. Polarization of 3C 279 IV.b Interpretation

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 17 IV. Polarization of 3C 279 IV.b Interpretation Fig. 7b: Sketched jet model Fig. 8: 3C 279 LCs (V+R) and opt. pol.

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 18 IV. Polarization of 3C 279 IV.c Gamma-ray-flaring Fig. 9: 3C 279 γ-ray light curve, optical light curves and polarization

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN 19 Fig. 10: 3C 279 mm and optical EVPA IV. Polarization of 3C 279 IV.d mm polarization

S EBASTIAN K IEHLMANN, D IPL.-P HYS. M AX -P LANCK I NSTITUT FÜR R ADIOASTRONOMIE, B ONN V. Conclusions 20 → no globally bending jet → helical motion in a helical magnetic field

Special thanks to the QMP collaborators: T. Savolainen (PI), S.G. Jorstad, F. Schinzel, K.V. Sokolovsky, I. Agudo, M. Aller, L. Berdnikov, V. Chavushyan, L. Fuhrmann, M. Gurwell, R. Itoh, J. Heidt, Y.Y. Kovalev, T. Krajci, O. Kurtanidze, A. Lähteenmäki, V.M. Larionov, J. León-Tavares, A.P. Marscher, K. Nilson, the AAVSO, the Yale SMARTS project and all the observers. Acknowledgements: SK was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Max Planck Institute for Radio Astronomy in cooperation with the Universities of Bonn and Cologne. Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, and NNX12AO93G. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.