1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA 92093-0424, U.S.A

Slides:



Advertisements
Similar presentations
K. Fujiki, H. Ito, M. Tokumaru Solar-Terrestrial Environment Laboratory (STELab), Nagoya University. SOLAR WIND FORECAST BY USING INTERPLANETARY SCINTILLATION.
Advertisements

H.-S. Yu Center for Astrophysics and Space Sciences, University of California at San Diego, LaJolla, CA, USA 3D-MHD Models Driven by IPS
Global Properties of Heliospheric Disturbances Observed by Interplanetary Scintillation M. Tokumaru, M. Kojima, K. Fujiki, and M. Yamashita (Solar-Terrestrial.
A General Cone Model Approach to Heliospheric CMEs and SEP Modeling Magnetogram-based quiet corona and solar wind model The SEPs are modeled as a passive.
Understanding Magnetic Eruptions on the Sun and their Interplanetary Consequences A Solar and Heliospheric Research grant funded by the DoD MURI program.
Coronal and Heliospheric Modeling of the May 12, 1997 MURI Event MURI Project Review, NASA/GSFC, MD, August 5-6, 2003 Dusan Odstrcil University of Colorado/CIRES.
UCB MURI Team Introduction An overview of ongoing work to understand a well observed, eruptive active region, along with closely related studies…..
RT Modelling of CMEs Using WSA- ENLIL Cone Model
What coronal parameters determine solar wind speed? M. Kojima, M. Tokumaru, K. Fujiki, H. Itoh and T. Murakami Solar-Terrestrial Environment Laboratory,
CASS/UCSD SALE 2014 An Account of Space Weather at Comet 67P/C-G H.-S. Yu, P.P. Hick, A. Buffington University of California at San Diego, LaJolla, California,
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
1 C. “Nick” Arge Space Vehicles Directorate/Air Force Research Laboratory SHINE Workshop Aug. 2, 2007 Comparing the Observed and Modeled Global Heliospheric.
CASS/UCSD AFOSR 2014 IPS 3D Velocity and Density Analysis B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San Diego,
CASS/UCSD KSSS D Analysis of Remote-sensed Heliospheric Data B.V. Jackson, H.-S. Yu, P.P. Hick, A. Buffington University of California at San Diego,
Solar System Missions Division Solar Orbiter Next major Solar and Heliospheric mission ESA ILWS flagship Now with the Inner Heliospheric Sentinels.
Solar Mass Ejection Imager (SMEI) Analysis of the 20 January 2005 CME B.V. Jackson, P.P. Hick, A. Buffington, M.M. Bisi, and E.A. Jensen Center for Astrophysics.
Solar System Physics Group Heliospheric physics with LOFAR Andy Breen, Richard Fallows Solar System Physics Group Aberystwyth University Mario Bisi Center.
Remote Sensing of Solar Wind Velocity Applying IPS Technique using MEXART Remote Sensing of Solar Wind Velocity Applying IPS Technique using MEXART Mejía-Ambriz.
Solar System Physics Group Heliospheric studies with LOFAR and EISCAT-3D Andy Breen, Mario Bisi & Richard Fallows Aberystwyth University.
CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San Diego,
CASS/UCSD - Jeju 2015 A Jets in the Heliosphere: A Solar Wind Component B.V. Jackson, H.-S. Yu, P.P. Hick, and A. Buffington, Center for Astrophysics and.
1 Interplanetary Magnetic Flux Enhancements as seen by STEREO C.T. Russell, L.K. Jian and J.G. Luhmann 18 th STEREO Science Working Group April Meudon,
Interplanetary Shocks in the Inner Solar System: Observations with STEREO and MESSENGER During the Deep Solar Minimum of 2008 H.R. Lai, C.T. Russell, L.K.
1 University of California, San Diego, U.S.A., 2 NASA - Goddard Space Flight Center, U.S.A., 3 George Mason University, U.S.A., 4 Naval Research Laboratory,
11. Assessing the Contribution of Heliospheric Imaging, IPS and other remote sensing observations in Improving Space Weather Prediction Bernie Jackson,
Measurements of White-Light Images of Cometary Plasma as a Proxy for Solar Wind Speed J.M. Clover, M.M. Bisi, A. Buffington, B.V. Jackson, P.P. Hick Center.
Solar System Physics Group Simultaneous Heliospheric Imager and Interplanetary Scintillation observations of CMEs and CIRs Gareth D. Dorrian
CASS/UCSD ILWS 2009 SMEI 3D reconstructions of density behind shocks B.V. Jackson, P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover, S. Hamilton Center.
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
IPS 3D reconstructions and their comparison with STEREO and Wind spacecraft Mario M. Bisi 1 Bernard V. Jackson 1, John M. Clover 1,
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
Heliospheric Simulations of the SHINE Campaign Events SHINE Workshop, Big Sky, MT, June 27 – July 2, 2004 Dusan Odstrcil 1,2 1 University of Colorado/CIRES,
Bernard V. Jackson, P. Paul Hick, Mario M. Bisi, John M. Clover, Andrew Buffington Center for Astrophysics and Space Sciences, University of California,
CASS/UCSD Dusan_CCMC_2013 Heliospheric Solar Wind Forecasting Using IPS Slides For A Possible CCMC Presentation 2013 Introduction:
Shocks in the IPS Wageesh Mishra Eun-kyung Joo Shih-pin Chen.
1 Pruning of Ensemble CME modeling using Interplanetary Scintillation and Heliospheric Imager Observations A. Taktakishvili, M. L. Mays, L. Rastaetter,
1 CASS, University of California, San Diego, U.S.A. ; 2 STFC Rutherford Appleton Laboratory, UK; 3 George Mason University, U.S.A.; 4 NASA/GSFC,
CASS/UCSD-STELab AOGS_2009 Solar Mass Ejection Imager (SMEI) 3D-reconstructions of the Inner Heliosphere Bernard V. Jackson, P. Paul Hick, Andrew Buffington,
IPS tomography IPS-MHD tomography. Since Hewish et al. reported the discovery of the interplanetary scintillation (IPS) phenomena in 1964, the IPS method.
A 3D-MHD Model Interface Using Interplanetary Scintillation (IPS) Observations B.V. Jackson 1, H.-S. Yu 1, P.P. Hick 1, A. Buffington 1, D. Odstrcil 2,
CASS/UCSD STEL 2016 Iterated Time-dependent IPS 3D-MHD Models B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San.
CASS/UCSD RSW Space Weather Forecasting from IPS Data Sets M. Tokumaru Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya ,
CASS/UCSD SWG SMEI observations and comparison with STEREO SMEI direct observations and 3D-reconstruction measurements and their comparison with.
Solar System Physics Group Heliospheric physics with LOFAR Andy Breen, Richard Fallows Solar System Physics Group Aberystwyth University Mario Bisi Center.
H.-S. Yu 1, B.V. Jackson 1, P.P. Hick 1, A. Buffington 1, M. M. Bisi 2, D. Odstrcil 3,4, M. Tokumaru 5 1 CASS, UCSD, USA ; 2 STFC RALab, Harwell Oxford,
Using World Interplanetary Scintillation Systems
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington,
B.V. Jackson, H.-S. Yu, P.P. Hick, and A. Buffington,
Driving 3D-MHD codes Using the UCSD Tomography
The Worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) Network Mario M. Bisi [1], J. Americo Gonzalez-Esparza[2][3][4],
H.-S. Yu1, B.V. Jackson1, P.P. Hick1,
Determination of the North-South Heliospheric Magnetic Field from Inner-Corona Closed-Loop Propagation B.V. Jackson Center for Astrophysics and Space Sciences,
ICME in the Solar Wind from STEL IPS Observations
B.V. Jackson, and P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover
The Dynamic Character of the Polar Solar Wind
2014SWW - S9 3D Reconstruction of IPS Remote-sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models Hsiu-Shan Yu1, B.V. Jackson1, P.P. Hick1,
ST23-D2-PM2-P-013 The UCSD Kinematic Global Solar Wind Boundary for use in ENLIL 3D-MHD Forecasting Bernard JACKSON1#+, Hsiu-Shan YU1, Paul HICK1, Andrew.
IPS Heliospheric Analyses (STELab)
Bernard V. Jackson1, Hsiu-Shan Yu1, P
Exploration of Solar Magnetic Fields from Propagating GONG Magnetograms Using the CSSS Model and UCSD Time-Dependent Tomography H.-S. Yu1, B. V. Jackson1,
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington, M. Tokumaru
Bernard V. Jackson, P. Paul Hick, Andrew Buffington, John M. Clover
D. Odstrcil1,2, V.J. Pizzo2, C.N. Arge3, B.V.Jackson4, P.P. Hick4
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington, M. Tokumaru
Investigation of Heliospheric Faraday Rotation Due to a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques.
ESS 261 Topics in magnetospheric physics Space weather forecast models ____ the prediction of solar wind speed April 23, 2008.
Presentation transcript:

1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A Tel: Solar-Terrestrial Environment Laboratory (STELab), Nagoya University, Furo-cho, Chikusa-ku, Nagoya , Japan 3 Heliophysics Science Division, NASA GSFC, USA 4 University of Maryland, College Park, MD, USA A 3D RECONSTRUCTED GLOBAL SOLAR WIND BOUNDARY FROM REMOTE-SENSING IPS DATA Hsiu-Shan Yu 1, B.V. Jackson 1, P.P. Hick 1, A. Buffington 1, J.M. Clover 1, Munetoshi Tokumaru 2, and Lan Jian 3,4 Abstract At UCSD, remote-sensing analyses of the inner heliosphere have been regularly carried out using interplanetary scintillation (IPS) data for almost two decades. These analyses have measured and reconstructed 3D solar wind structure throughout this time period. These global results, especially using Solar-Terrestrial Environment Laboratory (STELab) IPS observations, provide time-dependent density and velocity that is nearly complete over the whole heliosphere for the major part of each year and with a time cadence of about one day. When using the volumetric velocity from this time-dependent tomography, we can accurately convect-outward solar surface magnetic fields and thus provide values of the magnetic field throughout the global volume. We can extract an inner boundary at any height in the inner heliosphere from this analysis. These time- dependent 3D reconstructed results of density, velocity, and vector magnetic field, which are available from 15 solar radii out to 3.0 AU, have been compared successfully with in-situ measurements obtained near Earth, STEREO, Mars, Venus, MESSENGER, and at the Ulysses spacecraft. Here we present sample determinations of these global solar wind boundaries for 3D-MHD models from recent IPS data. 2. IPS Time-Dependent 3D Tomographic Reconstructions Global Remote View Density Meridional Cut Density Ecliptic Cut Density Enhancement at the East of Sun-Earth Line Slight Density Increase at Earth 1. Interplanetary Scintillation (IPS) Solar-Terrestrial Environment Laboratory (STELab) radio array, Japan; the new Toyokawa system is shown. USCD currently maintains a near-real-time website that analyzes and displays IPS data from the STELab. This modeling- analysis capability is also available at the CCMC. STELab Website: USCD Real-Time Website: CCMC Website: USCD Real-Time Website: http//:ips.ucsd.edu/ CCMC Website: App/index.jsp? Interplanetary Scintillation (IPS) observations have long been used to remotely-sense small-scale ( km) heliospheric density variation along the line of sight in the solar wind. These density inhomogeneities in the solar wind disturb the signal from point radio sources to produce an intensity variation projected on the ground whose pattern travels away from the Sun with the solar wind speed. This pattern, measured and correlated between different radio sites in Japan allows a determination of the solar wind speed. By cross-correlating the radio signal obtained at different IPS observing sites, we determine the solar wind speed. By measuring the scintillation strength of the IPS source, we can also determine the solar wind density. STELab IPS array systems 500 km [Jackson et al., Solar Phys., 2010; and Jackson, et al., Solar Phys, 2012 (in press)] IPS Fish-Eye Map 2011 November 09 Halo CME LASCO C2 STEREO COR-2B A slightly earlier CME moves outward to the southeast and is more towards the Earth. The same disturbance is seen by both STEREO-COR2B A dominant CME in the LASCO C2 field of view travels rapidly to the solar northeast and is more distant from the Earth.

3. Global Solar Wind Boundary We can accurately convect- outward solar surface magnetic fields and thus provide values of the field throughout the global volume by using the IPS velocity analyses (see Jackson et al. Poster). These extrapolations allow an immediate location and a track of any remote heliospheric position to the inner boundary surface in order to estimate potential solar particle propagation paths. Time-Dependent Boundary at 0.25 AU in Inertial Heliographic Coordinates (IHG) The Earth location in 3.31 o N, 333 o at 1 AU (  ) and its projection at 0.25 AU in 3.31 o N, 12.1 o (  ) are marked on these synoptic maps showing the structures present at the location of the projection. The density and velocity synoptic maps at 0.25 AU (a, b) show a relatively dense and high speed structure near the Earth projected location of the propagation path of the solar energetic particles. ACE Level-2 data show a strong increase of flux starting around 11 November (arrow). Below, our density and velocity reconstruc- tions show good agreement with the ACE in-situ data at 1AU. 4. Summary and Discussion The analysis of IPS data provides low-resolution global measurements of density and velocity with a time cadence of one day for both density and velocity, and slightly longer cadences for some magnetic field components. There are several data sources (IPS, SMEI), but the most long-term and substantiated source (that also measures velocity globally) is IPS data from the STELab arrays in Japan. Accurate observations of inner heliosphere parameters coupled with the best physics can extrapolate these outward to Earth or the interstellar boundary. For current specific applications it is best to certify that there are high-quality data (both remotely-sensed and in situ) available for the periods of study, especially when using these analyses as a lower boundary for 3D-MHD forward-modeling techniques. References Dunn, T., Jackson, B.V., Hick, P.P., Buffington, A., and Zhao, X.P., 2005, “Comparative Analyses of the CSSS Calculation in the UCSD Tomographic Solar Observations”, Solar Phys., 227, Jackson, B.V., Hick, P.P., Bisi, M.M., Clover, J.M., and Buffington, A., 2012, “Inclusion of Real-Time in-situ Measurements into the UCSD Time-Dependent Tomography and Its Use as a Forecast Algorithm”, Solar Phys., (in press). Jackson, B.V., Hick, P.P., Buffington, A., Clover, J.M., and Tokumaru, M., 2012, “Forecasting Transient Heliospheric Solar Wind Parameters at the Locations of the Inner Planets’”, Adv. in Geosciences, (in press). Dunn, T., et al., Solar Phys., 2005 Jackson et al., Adv. in Geosciences, 2012 (in press) Radial Magnetic Field, B norm r (nT) Density Ecliptic Cut, n norm (cm -3 ) The dashed circle shows the inner boundary and the solid Sun to Earth line shows the convection trace. 0.25AU