High-Precision Differential Astrometry Eduardo Ros (Max-Planck-Institut für Radioastronomie) June 11, 2003
High-Precision Differential Astrometry Introduction Technique Science Futurology
High precision & accuracy
Astrometric precision Theoretical precision for an interferometer: Lestrade et al. AJ, 99, 1663, 1990 RADIO l as ALMA: 100 l as ( k 0.87mm, D=10km, SNR=30) OPTICAL SATELLITES 4 l as SIM: 4 l as (pointed mode) 1 (10) l as GAIA: 1 (10) l as (V=5 (10), survey mode)
Astrometric observables Geometric delay: Interferometric response: Phase-delay (~0.02s) most precise, 2 o -ambiguous Group delay less precise, unambiguous Delay rate (~1.5 l s/s) less precise, unambiguous Total phase:
0 IMAGE – phases interpolated from the strong source to the weak one Phase-reference mapping 0 Hybrid-mapping of the two sources 0 Solved – weighted least-squares fit + phase-connection Phase-delay astrometry A priori model + fitting
Different techniques Phase-reference mapping (Alef, IAU Symp. 129, 523, 1988) –Hybrid double mapping (Rioja & Porcas A&A, 355, 552, 2000) –Fast-frequency switching (Middelberg et al., 6 th EVN Symp., 61, 2002) Phase-delay astrometry/phase-connection (Shapiro et al. AJ, 84, 1459, 1979) –Sky-closure (Ros et al. A&A, 384, 381, 1999) –Bootstrapping (Ros et al., in preparation) Cluster-cluster (Counselman et al. Phys. Rev. Lett. 33, 1621, 1974) 1st switched map (0.5º separation): Alef, IAU Symp. 192, Reid & Moran (eds.), p. 523, 1988
Attacking the problem – the software CALC / SOLVK – geodetic community –Provides and solves for the geometrical model VLBI3 / ASPY – MIT, CfA, Granada, València, York –Phase-delay, fine tuning of all parameters in the geometrical model, phase-connection process needed MASTERFIT / MODEST – JPL –Group delay SPRINT – Paris, Bordeaux –Phase reference mapping AIPS – general –Work with residuals over the model, easy handle of ionosphere, phase-reference mapping
Phase-delay astrometry PairΔθ (º)δΔθ (μas) Refs. 3C345/NRAO Shapiro 1979, Bartel A/B0.0094Marcaide 1983, 1994, Rioja 1996 PSR / Bartel 1985 PSR / Bartel C39.25/ Guirado / Guirado 1995, 1998, C395/3C Lara 1996 M81/SN1993J0.0580Ebbers 1998, Bartel 2000 PSR B / / Nunes / / Ros 1999 IM Peg/ / Lebach 1999 PSR B / / Campbell / Pérez-Torres / Guirado, in prep. S5 Polar Cap Sample1.6-30<100Ros, Pérez-Torres, Guirado, in preparation
Recent technical achievements Ionospheric correction from GPS measurements (Ros et al. A&A, 356, 357, 2000; AIPS task TECOR) Extension of the phase-connection up to 15º (Pérez- Torres et al. A&A, 360, 161, 2000) Astrometry with VSOP (Porcas et al., VSOP Conf., 245, 2000; Guirado et al. A&A, 371, 766, 2001) Phase-connection at k 7mm (Guirado et al. A&A, 353, L37, 2000) Phase-referencing test at k 3mm (Porcas & Rioja, 6 th EVN Symp., 65, 2002) <10 l as precisions via multiple calibrators at k 3.6cm (Fomalont & Kopeikin, 6 th EVN Symp., 53, 2002)
Astrometry & Astrophysics International Celestial Reference Frame establishment (comparison with optical –GAIA, SIM– frames; optical/radio shifts?) Registration of young supernova remnants (Bartel et al., ApJ, 581, 404, 2002) Pulsars Brisken’s review Galactic dynamics and the Galactic Center Reid’s talk AGN studies (absolute kinematics, core stationarity, opacities) General relativity Flaring stars & X-ray binaries – search for exoplanets Gravitational l -lensing (Honma & Kurayama, ApJ, 568, 717, 2002)
Core stationarity in AGN jets Following the standard jet model, the t ~1 surface (core) is frequency-dependent – How stable is this position in time? 3C 345 is stable within 20 l as/yr in R.A. (Bartel et al., Nature, 319, 733, 1986) A/B, B stationary, frequency-dependent position (Marcaide & Shapiro, AJ, 88, 1183, 1983; ApJ, 276, 56, 1984) 3C 66B, 8.4/2.3 GHz shift, elliptical paths at both freqs. – double black hole (Sudou et al., Science, 300, 1263, 2003) Sudou’s poster
ABCD Deciphering 4C Guirado et al. AJ 110, 2586, 1995 B component l a =90±43 l as/yr l d =7±68 l as/yr A B C Fey et al. AJ 114, 2284, 1997
The Draco Triangle: / / Ros et al., A&A, 384, 381, 1999 Dynamical center to the north of the VLBI core
The S5 Polar Cap sample Studied at the MPIfR since the 1980s (Eckart et al., 1987, Witzel et al., 1988, etc.) Flat spectrum radio sources: 8 QSOs 5 BL-Lac objects Long-term astrometric program Bootstrapping techniques
Gravitational delay from Sun: 3C 279 occultation in Oct. 1987, PPN = ± (Lebach et al., Phys. Rev. Lett. 75, 1439, 1995) Speed of gravity: Jupiter conjunction with J , Sep. 2002, = –0.02±0.19, c grav = (1.06±0.21)c (Fomalont & Kopeikin, 2003, astro-ph/ ) Fomalont’s talk VLBI & Gravity Probe B, measurement of the frame dragging – test observations of IM Pegasi (HR 8703) w.r.t. 3C & since 1997 Ransom’s talk, Lederman’s poster Radio flare Lebach et al. ApJ, 517, L43, 1999 General relativity
Maser astrometry OH (1.6 GHz) –Large shells at 1000 AU of the stars –Amplified star image (originated at the radial outflow from mass-losing stars), not for all stars van Langevelde’s poster H 2 O (22 GHz 50 l as) –Scales of 100 AU, ring-like –Much brighter than OH –Galactic dynamics (VERA project Kobayashi’s talk, Hachisuka, Honma, Mochizuki’s posters ), motions in the Local Group ( Brunthaler’s talk ) SiO (43 GHz 10 l as) –Close to star (10 AU); bright and abundant –Instable in position and variable in brightness
Radio stars – continuum observations Proper motions & parallax Astrometric link between HIPPARCOS and the ICRF using 11 radio stars – precision of 0.5mas in orientation, 0.3 mas/yr in rotation rate (Lestrade et al., A&A 304, 182, 1995; A&A 344, 1014, 1999) LSI 61303, Algol, UX Ari, HR 1099, HD , HR 5110, r 2 CrB, Cyg X1, HD , AR Lac, IM Peg
Radio Star Astrometry: Exoplanets Star at 50 pc μ=50 mas/yr M p =15 M j e=0.2 a=0.6 AU Wobble magnified 30 Perryman (2000)
AB Dor and its Very Low Mass Companion Guirado et al. ApJ, 490, 835, 1997 HIPPARCOS + VLBI 0.76 M M
Perryman, Rep. Prog. Phys. 63, 1209, 2000 Mass vs. separation Wobble limit: 10 l Radial speed limit: 10 m/s Mass vs. separation VLBI
Search for planet-like objects with a small, sensitive array Project running at Effelsberg/Robledo/ Goldstone Single baseline is enough: ~1 mas astrometric resolution Search for companions in nearby M dwarfs Wolf47 Do Cep EV Lac AD Leo EQ PegB DT Vir Guirado et al., 6th EVN Symp., 255, 2002
Future – instrumentation Model improvements: polar motion, mapping functions, antenna positions, etc. Petrov’s talk Atmosphere & ionosphere: WVR & GPS analysis, better mapping functions Lestrade’s poster Speed-up correlation: eMERLIN, eVLA, eVLBI Garrington’s talk – real-time VLBI ? Telescopes: –VERA (V LBI Exploration for Radio Astrometry) Kobayashi’s talk, Honma’s poster –ALMA
A wish list for the SKA (i) Intercontinental baselines – highest accuracy Provide calibrators everywhere in the sky for differential astrometry High frequencies: sources more point-like for astrometry – 22 GHz would allow water maser observations Sites equally spread in both hemispheres – full- sky coverage More antennas at one site – cluster-cluster mode
A wish list for the SKA (ii) Multi-beam system solves the Φ-extrapolation problem (observing simultaneously target and reference) Different lines of sight: tomography of the atmosphere/ionosphere - removal of propagation medium biases On-the-fly mapping and phase-connection with multiple beams/wide fields improves the precision for real-time astrometry and geodesy
General astronomy and astronautics: need of a reference frame, applications in space navigation Geodesy: polar motion, Earth Orientation Parameters, crustal displacements, tides, etc. Atmospheric science: troposphere and ionosphere modeling Astrophysics: alignment of VLBI images jet physics in extra-galactic radio sources opacity and spectral studies (after rigorous registration of images) radio stars (search for planets, X-ray binaries), etc. VLBI Astrometry