High-Precision Differential Astrometry Eduardo Ros (Max-Planck-Institut für Radioastronomie) June 11, 2003.

Slides:



Advertisements
Similar presentations
Wide Field VLBI Imaging I (Background) Indra Bains.
Advertisements

Basics of mm interferometry Turku Summer School – June 2009 Sébastien Muller Nordic ARC Onsala Space Observatory, Sweden.
KVN Advances in Source/Frequency Phase Referencing with KVN Astrometric comparison of sites of maser emission in R Leo Minoris. Richard Dodson: Brain Pool.
Asymmetric Planetary Nebulae IV La Palma, Canary Islands Water Fountains in Pre-Planetary Nebulae Mark Claussen, NRAO June 19, 2007 Hancock, New Hampshire.
Chapitre 3- Astrometry PHY6795O – Chapitres Choisis en Astrophysique Naines Brunes et Exoplanètes.
A rough guide to radio astronomy and its use in lensing studies Simple stuff other lecturers may assume you know (and probably do)
Radio Telescopes Large metal dish acts as a mirror for radio waves. Radio receiver at prime focus. Surface accuracy not so important, so easy to make.
The Future of the Past Harvard University Astronomy 218 Concluding Lecture, May 4, 2000.
Radio Interferometry Jeff Kenney. Outline of talk Differences between optical & radio interferometry Basics of radio interferometry Connected interferometers.
Very Long Baseline Interferometry (VLBI) – Techniques and Applications Steven Tingay ATNF Astronomical Synthesis Imaging Workshop Narrabri, 24 – 28 September,
Variable SiO Maser Emission from V838 Mon Mark Claussen May 16, 2006 Nature of V838 Mon and its Light Echo.
Alison Peck, Synthesis Imaging Summer School, 20 June 2002 Spectral Line VLBI Alison Peck SAO/SMA Project.
JOVIAN and SOLAR RADIO DEFLECTION EXPERIMENTS Ed Fomalont National Radio Astronomy Observatory Charlottesville, VA USA Sergei Kopeikin University of Missouri.
An idea of Space mm/sub- mm VLBI Array Xiao-Yu Hong ( 洪晓瑜 ) Jun-Hui Zhao ( 赵军辉 ) Zhi-qiang Shen ( 沈志强 ) Shanghai Astronomical Observatory ( 中国科学院上海天文台.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
Extrasolar planets. Detection methods 1.Pulsar timing 2.Astrometric wobble 3.Radial velocities 4.Gravitational lensing 5.Transits 6.Dust disks 7.Direct.
Probing AGN physics with VLBI at Parkes Stas Shabala University of Tasmania.
Astrometry of Binary Stars: What Are We Waiting For? Elliott Horch, Southern Connecticut State University 9/21/20081Stars in Motion BU 151AB 1 arcsec Andor.
VLBI Imaging and Astrometry of the Gravity Probe B Guide Star HR 8703 Jean-Francois Lestrade Observatoire de Paris/DEMIRM Ryan Ransom, Norbert Bartel,
An African VLBI network of radio telescopes as an SKA precursor Michael Gaylard Hartebeesthoek Radio Astronomy Observatory (HartRAO) P. O. Box 443, Krugersdorp.
Spectral Line VLBI Chris Phillips JIVE The Netherlands Chris Phillips JIVE The Netherlands.
Recent determination of Gamma with Cassini M.T. Crosta, F. Mignard CNRS-O.C.A. 5th RRFWG, June, Estec.
Imaging Compact Supermassive Binary Black Holes with VLBI G. B. Taylor (UNM), C. Rodriguez (UNM), R. T. Zavala (USNO) A. B. Peck (CfA), L. K. Pollack (UCSC),
(Spectral Line) VLBI Chris Phillips CSIRO ATNF Chris Phillips CSIRO ATNF.
High Sensitivity VLBI Sheperd Doeleman MIT Haystack Observatory.
AST 443/PHY 517 : Observational Techniques November 6, 2007 ASTROMETRY By: Jackie Faherty.
Marc Kuchner Princeton University Ground-Based Exoplanet Searches Radial Velocity Astrometry Transits Lensing Pulsation Timing Disks Direct Detection.
The ICRF, ITRF and VLBA Chopo Ma NASA’s Goddard Spaceflight Center.
th EVN Symposium 1 Parallax measurements of the Mira-type star UX Cygni with phase-referencing VLBI 8th European VLBI Network Symposium.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Extragalactic Source.
Moscow presentation, Sept, 2007 L. Kogan National Radio Astronomy Observatory, Socorro, NM, USA EVLA, ALMA –the most important NRAO projects.
PHASE REFERENCED MAPPING AND DIFFERENTIAL ASTROMETRY: APPLICATIONS JON MARCAIDE 26 Sept 2001 Castel San Pietro Terme.
VLBI/e-VLBI An Introduction for Networkers Tasso Tzioumis, ATNF, CSIRO.
Basic Concepts An interferometer measures coherence in the electric field between pairs of points (baselines). Direction to source Because of the geometric.
Abstract Astrometric observations of distant active galactic nuclei (AGN) have been used to construct quasi-intertial global reference frames, most notably.
Prospects for observing quasar jets with the Space Interferometry Mission Ann E. Wehrle Space Science Institute, La Canada Flintridge, CA, and Boulder,
Galactic Structure seen with VLBI astrometry Mareki Honma Mizusawa VLBI observatory, NAOJ Astrometry workshop in Socorro.
VERA ー 最新の成果と今後の展望 ー Mareki Honma Mizusawa VLBI observatory, NAOJ.
P-L Relation Compared with the P-L relation from Whitelock & Feast (2000) VLBI results (black) show less scatter than the Hipparcos results (red) Source.
RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing, August RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing,
Astrometry from VERA to SKA Hiroshi Imai Graduate School of Science and Engineering, Kagoshima University SKA-JP Astrometry Sub-Working Group.
S/X receiver for Parkes geodetic VLBI program 29 October 2012 ATNF, Sydney 29 October 2012 Оleg Titov (Geoscience Australia)
THE KINEMATICS OF th EVN SYMPOSIUM N.A. Kudryavtseva 1, S. Britzen 1, J. Roland 2, A. Witzel 1, E. Ros 1, A. Zensus 1, A. Eckart 3.
Cosmology and extragalactic astronomy Mat Page Mullard Space Science Lab, UCL 5. The cosmic distance ladder.
Multi-frequency Phase Referencing VLBI Observation - Phase Referenced Image - Tae Hyun Jung, Bong Won Sohn, Hideyuki Kobayashi, Tetsuo Sasao, Tomoya Hirota,
KVN V LBI E xtragalactic Co mpact R adio S ource S urvey Lee, Sang-Sung 2009EastAsiaVLBIWorkshop 2009EastAsiaVLBIWorkshop.
RELATIVE ASTROMETRY AND PHASE REFERENCING Ed Fomalont National Radio Astronomy Observatory Charlottesville, VA USA.
Iván Agudo with the collaboration of: S.N. Molina, J. L. Gómez (IAA-CSIC) T. P. Krichbaum, A. Roy, U. Bach (MPIfR) I. Martí Vidal (Chalmers) B. Campbell.
VLBI: The telescope the size of the planet
Quasi-Periodicity in the Parsec-Scale Jet of the Quasar 3C345 - A High Resolution Study using VSOP and VLBA - In collaboration with: J.A. Zensus A. Witzel.
Mapping the U.S. Scientific Future in VLBI ftp.aoc.nrao.edu/pub/VLBIfuture VLBI Future Committee: Shep.
The jet of the LLAGN of M81: Evidence of Precession Antxon Alberdi Instituto de Astrofísica de Andalucía (IAA-CSIC) Iván Martí-Vidal (ALMA Nordic Node;
William Peterson & Robert Mutel University of Iowa Miller Goss NRAO M. Gudel ETH, Zurich 1.
Phase Referencing Optimization Ed Fomalont National Radio Astronomy Observatory Charlottesville, VA USA.
Variability of a Sample of Potential meerKAT/SKA Calibrators Faith Hungwe – RU/HartRAO Advisers: R.Ojha – United States Naval Observatory (USNO)‏ (Alan.
Cosmic Masers Chris Phillips CSIRO / ATNF. What is a Maser? Microwave Amplification by Stimulated Emission of Radiation Microwave version of a LASER Occur.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array The Very Long Baseline.
About JVN about JVN Status Status Results Results Future plans Future plans Japanese VLBI Network (JVN): recent results and future plans for EAVN Kenta.
EVN 2015: Astrometry Parallaxes of Galactic sources.
Sergei Kopeikin Department of Physics and Astronomy,
High-Precision Astrometry of the S5 polarcap sources
“Astrometry through beer goggles” Adam Deller Swinburne University
Towards a kinematic model of the Local Group as-Astrometry with VLBI
Star Formation & The Galactic Center
VLBI Studies of Circumstellar Masers
(National Astronomical Observatory of Japan)
Wide-field, high sensitivity VLBI
Millimeter Megamasers and AGN Feedback
Water Masers in NGC7538 Region
Presentation transcript:

High-Precision Differential Astrometry Eduardo Ros (Max-Planck-Institut für Radioastronomie) June 11, 2003

High-Precision Differential Astrometry Introduction Technique Science Futurology

High precision & accuracy

Astrometric precision Theoretical precision for an interferometer: Lestrade et al. AJ, 99, 1663, 1990 RADIO l as ALMA: 100 l as ( k 0.87mm, D=10km, SNR=30) OPTICAL SATELLITES 4 l as SIM: 4 l as (pointed mode) 1 (10) l as GAIA: 1 (10) l as (V=5 (10), survey mode)

Astrometric observables Geometric delay: Interferometric response: Phase-delay (~0.02s) most precise, 2 o -ambiguous Group delay less precise, unambiguous Delay rate (~1.5 l s/s) less precise, unambiguous Total phase:

0 IMAGE – phases interpolated from the strong source to the weak one Phase-reference mapping 0 Hybrid-mapping of the two sources 0 Solved – weighted least-squares fit + phase-connection Phase-delay astrometry A priori model + fitting

Different techniques Phase-reference mapping (Alef, IAU Symp. 129, 523, 1988) –Hybrid double mapping (Rioja & Porcas A&A, 355, 552, 2000) –Fast-frequency switching (Middelberg et al., 6 th EVN Symp., 61, 2002) Phase-delay astrometry/phase-connection (Shapiro et al. AJ, 84, 1459, 1979) –Sky-closure (Ros et al. A&A, 384, 381, 1999) –Bootstrapping (Ros et al., in preparation) Cluster-cluster (Counselman et al. Phys. Rev. Lett. 33, 1621, 1974) 1st switched map (0.5º separation): Alef, IAU Symp. 192, Reid & Moran (eds.), p. 523, 1988

Attacking the problem – the software CALC / SOLVK – geodetic community –Provides and solves for the geometrical model VLBI3 / ASPY – MIT, CfA, Granada, València, York –Phase-delay, fine tuning of all parameters in the geometrical model, phase-connection process needed MASTERFIT / MODEST – JPL –Group delay SPRINT – Paris, Bordeaux –Phase reference mapping AIPS – general –Work with residuals over the model, easy handle of ionosphere, phase-reference mapping

Phase-delay astrometry PairΔθ (º)δΔθ (μas) Refs. 3C345/NRAO Shapiro 1979, Bartel A/B0.0094Marcaide 1983, 1994, Rioja 1996 PSR / Bartel 1985 PSR / Bartel C39.25/ Guirado / Guirado 1995, 1998, C395/3C Lara 1996 M81/SN1993J0.0580Ebbers 1998, Bartel 2000 PSR B / / Nunes / / Ros 1999 IM Peg/ / Lebach 1999 PSR B / / Campbell / Pérez-Torres / Guirado, in prep. S5 Polar Cap Sample1.6-30<100Ros, Pérez-Torres, Guirado, in preparation

Recent technical achievements Ionospheric correction from GPS measurements (Ros et al. A&A, 356, 357, 2000; AIPS task TECOR) Extension of the phase-connection up to 15º (Pérez- Torres et al. A&A, 360, 161, 2000) Astrometry with VSOP (Porcas et al., VSOP Conf., 245, 2000; Guirado et al. A&A, 371, 766, 2001) Phase-connection at k 7mm (Guirado et al. A&A, 353, L37, 2000) Phase-referencing test at k 3mm (Porcas & Rioja, 6 th EVN Symp., 65, 2002) <10 l as precisions via multiple calibrators at k 3.6cm (Fomalont & Kopeikin, 6 th EVN Symp., 53, 2002)

Astrometry & Astrophysics International Celestial Reference Frame establishment (comparison with optical –GAIA, SIM– frames; optical/radio shifts?) Registration of young supernova remnants (Bartel et al., ApJ, 581, 404, 2002) Pulsars  Brisken’s review Galactic dynamics and the Galactic Center  Reid’s talk AGN studies (absolute kinematics, core stationarity, opacities) General relativity Flaring stars & X-ray binaries – search for exoplanets Gravitational l -lensing (Honma & Kurayama, ApJ, 568, 717, 2002)

Core stationarity in AGN jets Following the standard jet model, the t ~1 surface (core) is frequency-dependent – How stable is this position in time? 3C 345 is stable within 20 l as/yr in R.A. (Bartel et al., Nature, 319, 733, 1986) A/B, B stationary, frequency-dependent position (Marcaide & Shapiro, AJ, 88, 1183, 1983; ApJ, 276, 56, 1984) 3C 66B, 8.4/2.3 GHz shift, elliptical paths at both freqs. – double black hole (Sudou et al., Science, 300, 1263, 2003)  Sudou’s poster

ABCD Deciphering 4C Guirado et al. AJ 110, 2586, 1995 B component l a =90±43 l as/yr l d =7±68 l as/yr A B C Fey et al. AJ 114, 2284, 1997

The Draco Triangle: / / Ros et al., A&A, 384, 381, 1999 Dynamical center to the north of the VLBI core

The S5 Polar Cap sample Studied at the MPIfR since the 1980s (Eckart et al., 1987, Witzel et al., 1988, etc.) Flat spectrum radio sources: 8 QSOs 5 BL-Lac objects Long-term astrometric program Bootstrapping techniques

Gravitational delay from Sun: 3C 279 occultation in Oct. 1987,  PPN = ± (Lebach et al., Phys. Rev. Lett. 75, 1439, 1995) Speed of gravity: Jupiter conjunction with J , Sep. 2002,  = –0.02±0.19, c grav = (1.06±0.21)c (Fomalont & Kopeikin, 2003, astro-ph/ )  Fomalont’s talk VLBI & Gravity Probe B, measurement of the frame dragging – test observations of IM Pegasi (HR 8703) w.r.t. 3C & since 1997  Ransom’s talk, Lederman’s poster Radio flare Lebach et al. ApJ, 517, L43, 1999 General relativity

Maser astrometry OH (1.6 GHz) –Large shells at 1000 AU of the stars –Amplified star image (originated at the radial outflow from mass-losing stars), not for all stars  van Langevelde’s poster H 2 O (22 GHz  50 l as) –Scales of 100 AU, ring-like –Much brighter than OH –Galactic dynamics (VERA project  Kobayashi’s talk, Hachisuka, Honma, Mochizuki’s posters ), motions in the Local Group (  Brunthaler’s talk ) SiO (43 GHz  10 l as) –Close to star (10 AU); bright and abundant –Instable in position and variable in brightness

Radio stars – continuum observations Proper motions & parallax Astrometric link between HIPPARCOS and the ICRF using 11 radio stars – precision of 0.5mas in orientation, 0.3 mas/yr in rotation rate (Lestrade et al., A&A 304, 182, 1995; A&A 344, 1014, 1999) LSI 61303, Algol, UX Ari, HR 1099, HD , HR 5110, r 2 CrB, Cyg X1, HD , AR Lac, IM Peg

Radio Star Astrometry: Exoplanets Star at 50 pc μ=50 mas/yr M p =15 M j e=0.2 a=0.6 AU Wobble magnified 30  Perryman (2000)

AB Dor and its Very Low Mass Companion Guirado et al. ApJ, 490, 835, 1997 HIPPARCOS + VLBI 0.76 M  M 

Perryman, Rep. Prog. Phys. 63, 1209, 2000 Mass vs. separation Wobble limit: 10 l Radial speed limit: 10 m/s Mass vs. separation VLBI

Search for planet-like objects with a small, sensitive array Project running at Effelsberg/Robledo/ Goldstone Single baseline is enough: ~1 mas astrometric resolution Search for companions in nearby M dwarfs Wolf47 Do Cep EV Lac AD Leo EQ PegB DT Vir Guirado et al., 6th EVN Symp., 255, 2002

Future – instrumentation Model improvements: polar motion, mapping functions, antenna positions, etc.  Petrov’s talk Atmosphere & ionosphere: WVR & GPS analysis, better mapping functions  Lestrade’s poster Speed-up correlation: eMERLIN, eVLA, eVLBI  Garrington’s talk – real-time VLBI ? Telescopes: –VERA (V LBI Exploration for Radio Astrometry)  Kobayashi’s talk, Honma’s poster –ALMA

A wish list for the SKA (i) Intercontinental baselines – highest accuracy Provide calibrators everywhere in the sky for differential astrometry High frequencies: sources more point-like for astrometry – 22 GHz would allow water maser observations Sites equally spread in both hemispheres – full- sky coverage More antennas at one site – cluster-cluster mode

A wish list for the SKA (ii) Multi-beam system solves the Φ-extrapolation problem (observing simultaneously target and reference) Different lines of sight: tomography of the atmosphere/ionosphere - removal of propagation medium biases On-the-fly mapping and phase-connection with multiple beams/wide fields improves the precision for real-time astrometry and geodesy

General astronomy and astronautics: need of a reference frame, applications in space navigation Geodesy: polar motion, Earth Orientation Parameters, crustal displacements, tides, etc. Atmospheric science: troposphere and ionosphere modeling Astrophysics: alignment of VLBI images jet physics in extra-galactic radio sources opacity and spectral studies (after rigorous registration of images) radio stars (search for planets, X-ray binaries), etc. VLBI Astrometry