Stretches for the Lower Extremity Chapter 4. Hip Extensors: Hamstrings and Gluteus Maximus Anatomy: Chronically shortened hamstrings can contribute to.

Slides:



Advertisements
Similar presentations
Basic Biomechanics, (5th edition) by Susan J. Hall, Ph.D.
Advertisements

Lower Limb Skeleton (homologous with upper limb)
Hip & Lower Limb Muscles
Human Anatomy, First Edition McKinley & O'Loughlin
Thigh. Anatomy Of TheThigh The thighs are composed of numerous muscles including the quadriceps (rectus femoris, rectus medialis, rectus lateralis, and.
Hip, Thigh, & Leg Muscles 22 Oct. 2012Hip-Thigh-Leg.ppt1.
The Muscular System: Part D
Lower Limb Lab 7b. Muscles Crossing Hip and Knee Joints Most anterior compartment muscles of the hip and thigh flex the femur at the hip and extend the.
Muscles Crossing Hip and Knee Joints
Gluteal Compartment/ Lateral Compartment:
The muscles of lower limb
Classification and action of the lower extremity muscles
The Muscular System 10.
THE HIP JOINT.
Muscles Crossing Hip and Knee Joints
The Muscular System Part D
Extrinsic Shoulder Muscles
PELVIS & HIP BONES 2 Bones or sides Connected by the Sacrum PARTS OF THE BONE Ilium Ischium Pubis BONES Illium Ishium Femur HIP JOINT Acetabulum + Femur.
Lab Activity 11: Group III
Musculoskeletal Anatomy Quiz
Muscles of the Lower Appendage (Thigh, Leg, & Foot)
Muscles that Move the Thigh & Leg
Iliopsoas (Psoas major & Iliacus)
Muscles of the Foot and Lower Leg
Tendon of extensor hallucis longus m. Adductor longus m.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 10 The Muscular System:
Muscles of the Human Body!
Muscles Martini Chapter 11
Lower Leg. Muscles of the Anterior Leg Dorsiflexors of ankles and extensors of toes reside in anterolateral compartment as the tibia fills the anteriomedial.
THE HIP JOINT.
Muscles of the arms and legs
Kinesiology for Manual Therapies
Sports Medicine 15 Unit I: Anatomy Part 3 Anatomy of the Lower Limbs:
Hip & Lower Limb Muscles
Biomechanics of Human Lower Extremity
Chapter 3 Muscle Anatomy and Functions
Human Lower Body Muscles
Muscles of the upper and lower limbs Appendicular Muscles
$100 $200 $300 $400 $500 $100$100$100 $200 $300 $400 $500 SHOULDER and ARM FINAL ROUND $100 $200 $300 $400 $500 ELBOW and FOREARM HIPS and THIGH KNEE and.
Lecture 6 The Hip.
The Biomechanics of the Human Lower Extremity
Classification and action of the lower extremity muscles.
Muscular System Part D Prepared by Alexander Cheroske and W. Rose.
Chapter 10 The Muscular System Part H.
Muscles of the Pelvis, Leg and Foot
SHANDONG UNIVERSITY Liu Zhiyu
Windsor University School of Medicine
Skeletal and muscular considerations in movement Knee, Ankle, & Foot.
Goniometric Assessment
Hip & Pelvis.
Myology Myology of the Ankle.
Muscles on thigh, hands, and feet By: Annie Jeehyun Jean.
Anatomy and Physiology I
KNR 181 Muscles Acting on Lower Extremities Exam Review $100 $200 $300 $400 $500 $100$100$100 $200 $300 $400 $500 Origins Insertions Actions Identification.
Muscles and Muscle Action Lower Extremities. Muscles that Move… The Lower Extremities: The Coxal joint/thigh Thigh muscles that move the knee joint/leg.
Muscles acting on the Hip and Lower Limb
Group X Thigh, Lateral view Human:. Group X Thigh, Lateral view 1.Semitendinosus 2.Biceps Femoris 3.Caudofemoralis **no homolog in humans 4.Gluteus Maximus.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
M USCLES THAT M OVE THE L OWER L IMB p M USCLES THAT MOVE THE T HIGH Anterior and Posterior groups Anterior: primarily flex thigh Posterior:
Muscles of the Hip - Mr. Brewer.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings MUSCLE ORIGIN, INSERTION, AND ACTION THE MUSCLULAR SYSTEM.
Muscles of the lower extremities
11-6 Appendicular Musculature
The Muscular System Part E
Ankle Anatomy Sports Medicine I. Tibialis Anterior Dorsiflexes foot Dorsiflexes foot Inverts foot Inverts foot Adducts foot Adducts foot.
Muscles Crossing the Shoulder
Articulations of the Hip, Knee, and Ankle
© 2016 Pearson Education, Inc.
The Muscular System: Part D
Muscles of the Foot and Lower Leg
Presentation transcript:

Stretches for the Lower Extremity Chapter 4

Hip Extensors: Hamstrings and Gluteus Maximus Anatomy: Chronically shortened hamstrings can contribute to these conditions: Low back pain Knee pain Leg length differences Restricted stride length Overworked quadriceps Gluteus maximus is a powerful hip extensor that can be involved in low back pain.

Hamstrings and Gluteus Maximus: Review Origins, Insertions, and Actions Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 180.

Functional Assessment: Hip Flexion to 90 Degrees With the Knee Straight Is Ideal

Hip Rotators: Piriformis One of six deep lateral hip rotators, all of which insert on some portion of the greater trochanter. When these muscles are hypertonic, they contribute to a toe-out gait seen in dancers, and they restrict internal rotation of the hip. Stretching the piriformis also stretches the other lateral rotators. Although the piriformis is considered a lateral rotator of the hip, it may be more of a postural muscle, stabilizing the spine and maintaining pelvic balance in conjunction with the psoas (Myers 1998).

Piriformis: Review Origin, Insertion, and Action

Functional Assessment (Piriformis): The Path of the Sciatic Nerve Through the Lateral Rotators

Hip Abductors Primary abductors of the hip are the tensor fasciae latae (TFL) and the gluteus medius and minimus. These muscles abduct the hip and also stabilize it during weight-bearing activities. Tightness in these muscles can contribute to pelvic imbalances, which can cause pain in the hips, low back, and knees.

Hip Abductors: Review Origins, Insertions, and Actions

Hip Abductors: Functional Assessment Abductor tightness test (modified Ober’s test). Excessive tightness in the hip abductors prevents this position. Typical pain sites for iliotibial band syndrome. Fig (right): Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 202.

Anatomy: Hip Adductors When you bring your legs together (toward your midline), you use adductor muscles. Adductor muscles can be divided into the short adductors (pectineus, adductor brevis, and adductor longus) and the long adductors (adductor magnus and gracilis). We’ve provided one illustration showing all the adductors.

Hip Adductors: Review Origins, Insertions, and Actions Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 183.

Hip Adductors: Functional Assessment Normal range of hip abduction is 45 to 50 degrees from the midline. Limited range is usually due to tight adductors. 50°

Hip Flexors: Quadriceps Group Quadriceps consist of four muscles and are powerful extensors of the knee. One of the quads, the rectus femoris, also crosses the hip joint and acts as a hip flexor, assisting the psoas. Chronically short quads can contribute to low back pain. The quadriceps are usually involved in any type of knee pain or instability.

Quadriceps Group: Review Origins, Insertions, and Actions Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 198.

Quadriceps: Functional Assessment Normal range of knee extension. (a) The quadriceps should fully extend the knee. (b) The arc of motion should be smooth, with no hesitation or jerkiness.

Hip Flexors: Psoas and Iliacus Iliopsoas is the primary hip flexor. Because of its attachment along the lumbar spine, it affects the angle of the lumbar curve. A psoas that is too tight can cause an increase in the curve, which leads to swayback and low back pain. However, sometimes a tight psoas will flatten the lumbar curve, which can also lead to low back pain. For a more detailed discussion of this seeming contradiction, see Tom Myers’ article “Poise: Psoas-Piriformis Balance” (1998).

Psoas and Iliacus: Review Origins, Insertions, and Actions Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 178.

Psoas and Iliacus: Functional Assessment Normal range of (a) hip flexion and (b) hip extension. a b 120° 30°

Plantarflexors: Gastrocnemius and Soleus Gastrocnemius-soleus muscles are also called the triceps surae. They insert into the heel via the Achilles tendon, the strongest tendon in the body. The gastrocnemius is a two- headed muscle that gives the calf its shape. The soleus muscle, which lies underneath the gastrocnemius, is more often the reason for calf tightness.

Gastrocnemius and Soleus: Review Origin, Insertion, and Action Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 202.

Gastrocnemius and Soleus: Functional Assessment (a) Normal range of dorsiflexion at the ankle. (b) With the knee bent, the gastrocnemius is slack, and any limitation in dorsiflexion is probably due to a tight soleus. ab 20°

Gastrocnemius and Soleus: Functional Assessment (continued) Normal range of ankle plantarflexion is 50 degrees. 50°

Toe Flexors: Flexor Hallucis Longus, Flexor Digitorum Longus We discuss only two of the six toe flexors (flexor hallucis and flexor digitorum longus). The muscle table lists all six toe flexors. With the foot on the ground, flexor hallucis and digitorum longus assist in maintaining balance by keeping the toe pads on the ground. Flexor hallucis longus helps support longitudinal arch and exerts a strong propulsion action during toe-off phase of gait.

Flexor Hallucis Longus and Flexor Digitorum Longus: Review Origins, Insertions, and Actions

Flexor Hallucis Longus and Flexor Digitorum Longus: Functional Assessment Normal range of motion of the great toe: 80 degrees of extension, 25 degrees of flexion.

Dorsiflexors: Tibialis Anterior When the foot is free to move, tibialis anterior dorsiflexes and inverts it. When the foot is on the ground, tibialis anterior assists in maintaining balance. During walking or running, it helps prevent the foot from slapping onto the ground after heel strike and lifts the foot to clear the ground as the leg is swinging forward.

Tibialis Anterior: Review Origin, Insertion, and Action Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 216.

Tibialis Anterior: Functional Assessment

Toe Extensors: Extensor Hallucis Longus, Extensor Digitorum Longus We illustrate and discuss only two of the four toe extensors (extensor hallucis longus and extensor digitorum longus). The muscle table lists all four toe extensors. Extensor hallucis longus and extensor digitorum longus help control the speed of descent of the forefoot to the ground following heel strike, preventing the foot from slapping onto the ground. They also contribute to postural stability by controlling posterior sway. With the foot anchored to the ground, they pull the leg forward at the ankle.

Extensor Hallucis Longus and Extensor Digitorum Longus: Review Origins, Insertions, and Actions

Extensor Hallucis Longus and Extensor Digitorum Longus: Functional Assessment Normal range of motion of the great toe: 80 degrees of extension, 25 degrees of flexion.

Evertors: Peroneal (Fibularis) Group Invertors: Tibialis Anterior and Posterior Eversion (pronation) and inversion (supination) of the foot occur with every step. Proper function of evertors and invertors is critical for biomechanics and stability. Invertors and evertors often control movement rather than initiate it. Primary evertors are two of the three peroneal muscles (also known as fibularis muscles): peroneus longus and peroneus brevis. They make up the lateral compartment of the leg. The peroneus tertius is in the anterior compartment with the tibialis anterior. Although peroneals are most often considered evertors, they also stabilize the foot, ankle, and leg. Primary invertors are tibialis anterior and posterior. The tibialis posterior is the deepest muscle in the calf.

Evertors and Invertors: Review Origins, Insertions and Actions Adapted, by permission, from R.S. Behnke, 2005, Kinetic anatomy, 2nd ed. (Champaign, IL: Human Kinetics), 216, 217.

Evertors and Invertors: Functional Assessment Normal ROM for inversion (supination) is 45 degrees; for eversion (pronation) it is 20 degrees.

Spiral–Diagonal Patterns for the Lower Extremity Not all spiral patterns for the leg lend themselves to stretching. Extension end of the D2 pattern is awkward. Compared to single-plane stretches, the patterns require more concentration from both the stretcher and you. Illustrate what you want the stretcher to do by taking him through the pattern passively. You’re trying to improve ROM at the end of the pattern. Start with the stretcher at the end of his range in all three planes of motion. In isometric phase, stretcher attempts to move toward the opposite three planes (toward the shortened direction). After isometric effort, stretching occurs as the stretcher moves farther in all three planes of motion toward lengthened direction.