Download presentation
Presentation is loading. Please wait.
Published byKristopher Todd Modified over 8 years ago
1
Genesis /ALICE Benchmarking Igor Zagorodnov Beam Dynamics Group Meeting 17.03.08
2
Genesis 1.3 (S.Reiche et al) ALICE only 3D 3D Cartesian field solver (ADI) Runge-Kutta integrator Dirichlet boundary conditions transverse motion many other physics parallel (MPI) 1D/2D/3D 3D azimuthal field solver (Neumann) Leap-Frog integrator Perfectly Matched Layer transverse motion simplified model parallel (MPI) tested by me on the examples from the book of SSY (~Saldin et al, 2000 „The Physics …“,)
3
2.5 MeV
4
Genesis vs. ALICE / Energy Spread (round Gaussian beam, Gaussian energy spread, parallel motion only) ALICE Genesis W = 4 kW SASE 2 parameters
5
How to simulate emmitance with laminar particle motion only? -E. Saldin et al, TESLA-FEL 95-02 (1995); S.Reiche PhD Thesis (1999). - E. Saldin et al, The Physics of Free Electron Lasers (2000) - E. Saldin et al, DESY 05-164 (2005)
6
Genesis vs. ALICE / Emmitance (round Gaussian beam, Gaussian energy spread) ALICE (laminar) Genesis
7
ALICE (laminar) Genesis Field growth rate Genesis vs. ALICE (emittance parameter fit)
8
ALICE (laminar) Genesis Detuning corresponds to maximal growth rate in linear regime Genesis vs. ALICE with laminar motion The transverse motion has to be implemented in ALICE
9
Genesis vs. ALICE with transverse motion P0 = 4 kW 19% Genesis (N=6e4) Genesis (N=3e4) Alice (N=6e4) Alice (N=3e4) The difference in saturation length is 7 %. The difference in power gain is 19 %. The difference does not reduce with changing of the discrete model parameters ?!. I=5KA N ~10 400
10
GINGER/GENESIS results for “0-order” 200- pC case Observations: Again, GENESIS shows slightly longer gain length, 10-m later saturation but 15% higher power Again, GINGER shows deeper post- saturation power oscillation Little sensitivity (2 m, 7%) in GINGER results to 8X particle number increase Possible reasons for differences: bugs slight differences in initial e-beam properties (e.g. mismatch) grid effects (e.g. outer boundary) ??? William M. Fawley, ICFA 2003 Workshop on Start-to-End Numerical Simulations of X-RAY FEL’s
12
Bridsall C.K., Langdon A.B., Plasma Physics via Computer Simulations, 1991 Dawson J.M, Particle simulation of Plasmas // Reviews of Modern Physics, 1983 About advantages of the „quiet start“ see, for example, in
13
N trans x,%x,% y,%y,% px, % py, % Genesis 75001.57.55.15.8 150004.14.74.13.2 ASTRA 75001.64.20.432.3 150000.43.30.621.9 Alice 75000.81.00.8 150000.4 0.5 Properties of the Normal macroparticle distribution
14
N trans RxyRpxpyRxpyRypx Genesis 75008e-32e-25e-38e-3 150008e-31e-21e-33e-3 ASTRA 75004e-37e-35e-3 150005e-34e-36e-34e-3 Alice 75001e-32e-38e-42e-3 150005e-41e-35e-48e-4 Properties of the Normal macroparticle distribution
15
ALICE Genesis clustering Quiet start ? What is the reason? ASTRA
16
The polar form of Box-Muller algorithm (in Genesis) maps the „quiet“ uniform distribution in a clustered normal distribution. Uniform Normal Quiet start ?
17
ALICE Genesis Quiet start ? clustering
18
ALICE Genesis Quiet start ? clustering
19
ASTRA
20
Modified Genesis vs. ALICE with transverse motion P0 = 4000 Watt Genesis (modified) (N=6e4) Alice (N=6e4)
21
The transformation used in ALICE It transforms the uniform distribution X i (0,1) to the normal distribution Y i ( ). This transformation does not destroy the „quiet start“. It uses the straightforward transformation by inverse error function
22
Convergence Genesis Genesis (modified) ALICE Genesis Genesis (modified) ALICE Genesis: Hammersley and Box-Mueller Genesis (modified):Hammersley and the inverse error function ALICE:Sobol and the inverse error function I=5KA N ~10 400 at saturation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.