Presentation is loading. Please wait.

Presentation is loading. Please wait.

Slide 1 Pre Type II Nucleosynthesis (s-process) 21 solar mass star ratio to solar abundance Rauscher et al. (2002)

Similar presentations


Presentation on theme: "Slide 1 Pre Type II Nucleosynthesis (s-process) 21 solar mass star ratio to solar abundance Rauscher et al. (2002)"— Presentation transcript:

1 Slide 1 Pre Type II Nucleosynthesis (s-process) 21 solar mass star ratio to solar abundance Rauscher et al. (2002)

2 Slide 2 Type II SN Nucleosynthesis (r-process) Rauscher et al. (2002) 25 solar mass star

3 Slide 3 Galactic Composition evolution Chiappini (2004)

4 Slide 4 Nearby Supernova Knie et al. (2004)

5 Slide 5 Interstellar shocks Clayton (1979)

6 Slide 6 Silicate Condensation Clayton (1979)

7 Slide 7 Significant Events The oldest crust in today’s oceans is around 0.2 Ga 200  m

8 Slide 8 Wyoming Craton Beartooth Mountains

9 Slide 9 Rhenium-Osmium System 187 Re 187 Os Half life of about 42 Billion years The convecting asthenospheric mantle has roughly chondritic ratios, with 187 Re 188 Os = 0.4 187 Os 188 Os = 0.127 to 0.129

10 Slide 10 Rhenium-Osmium System PUM after Shirey and Walker (1998)

11 Slide 11 Archean+ Mantle Osmium Montana Chromites 187 Os/ 188 Os

12 Slide 12 Timeline for the eastern Beartooth Mts. 3.56 Ga - Lu-Hf zircon age of average Hellroaring Plateau zircons 3.2-3.4 Ga - major crust-forming event that yields the dominant zircon population in quartzites 3.1-2.8 Ga - granulite facies metamorphism (M1) (5-7 kbar 750-800ºC) 2.78-2.79 Ga - andesitic magmatism and intrusion of Long Lake granodiorites 2.79-2.74 Ga - deformation and amphibolite facies metamorphism (M2) 2.74 Ga - massive intrusion of the Long Lake Granite and local (M3) granulite facies overprint. Some new growth of zircon rims in Hellroaring quartzites 2.74 Ga – intrusion of mafic igneous layered Stillwater Complex in adjacent Stillwater block 1.3 Ga – Rb-Sr and K-Ar emplacement age of alkali-olivine mafic dikes 774 Ma – 40 Ar/ 39 Ar emplacement age of diabase dikes (Gunbarrel magmatic event) 65-57 Ma - rapid uplift (apatite fission track data) – Laramide Orogeny (Henry & Mogk, 2003)

13 Slide 13 from Beartooth Highway, Montana Hellroaring Plateau Chromite Mine

14 Slide 14 A giant magma ocean and separation of the Earths core: constraints on these events from tiny, brief experiments Incandescent Bulb, 2500°C Liquidus of Mantle at 700 km Kilauea, Hawaii, 1200°C

15 Slide 15 The Earth is differentiated How and When did this occur? Two Sets of Constraints: Physical Mechanisms and Chemical Signatures

16 Slide 16 Timing of Core formation

17 Slide 17 Heat Sources: Solar/Magnetic Induction heating (but T-Tauri: Polar Flows) Short-lived radioisotopes ( 26 Al 0.73 Ma half life: must accrete fast) Long-lived radioisotopes (U, Th, K) (slow, only for larger bodies) Large impacts (only for larger bodies: between Moon and Mars-sized) Potential energy of core formation (larger bodies: 6300 km radius: 2300°C rise, Resonant tidal heating (Only moons: Moon?, Titan, Io, Europa) 3000 km radius: 600°C rise)

18 Slide 18 Observations/Inferences: Rocky inner, icy outer solar system Asteroid differentiation temperatures heliocentrically distributed Gross zonal structure within asteroid belt preserved The Moon had a magma ocean The solar photosphere has a composition very similar to CI carbonaceous chondrites Heat source concentrated near Sun? or Longer times to accrete object farther from the sun (less 26 Al heating)?

19 Slide 19 Two Possible Mechanisms to Separate Metal from Silicate Porous FlowImmiscible Liquids and Deformation

20 Slide 20 Dihedral (wetting) Angle Theory The Dihedral Angle Theta is a force balance between interfacial energies

21 Slide 21 Sulfide Melt in an Olivine Matrix Most Fe-Ni-S melts do not form interconnected melt channels

22 Slide 22 Samples Recording Planetary Differentiation

23 Slide 23 Pallasites: Asteroid Core-Mantle Boundary Brenham

24 Slide 24 Short Lived Isotopes: Early Solar System Gilmore (2002) Science

25 Slide 25 Victoria and Barringer Craters

26 Slide 26 LEW86010; silicate differentiation reference (4558 ± 0.5 Ma) Core segregation (4556 ± 1 Ma) Silicate differentiation (4526 ± 21 Ma) ALH84001 (4500 ± 130 Ma) Gov. Valad. (1370 ± 20 Ma) Lafayette (1320 ± 50 Ma) Y000593 (1310 ± 30 Ma) NWA998 (1290 ± 50 Ma) Nakhla (1260 ± 70 Ma) Dhofar 019 (575 ± 7 Ma) DaG 476 (474 ± 11 Ma) Y980459 (290 ± 40 Ma) QUE94201 (327 ± 10 Ma) NWA1195 (348 ± 19 Ma) NWA1056 (185 ± 11 Ma) LEW88516 (178 ± 9 Ma) ALH77005 (177 ± 6 Ma) EET79001B (173 ± 3 Ma) Y793605 (173 ± 14 Ma) EET79001A (173 ± 10 Ma) NWA856 (170 ± 19 Ma) LA1 (170 ± 7 Ma) Zagami (169 ± 7 Ma) Shergotty (165 ± 11 Ma) Chassigny (1362 ± 62) 174 ± 2 Ma 1327 ± 39 Ma 332 ± 9 Ma Carbonates ALH84001 (3929 ± 37 Ma) Salts shergottites (0-175 Ma) Iddingsite nakhlites (633 ± 23 Ma) Borg & Drake 010002000300040004657 Age (Ma) CAI (solar system formation reference) (4567 ± 0.6 Ma) Ages of Dated Martian Events

27 Slide 27 Old Lunar Highland Crust

28 Slide 28 Warren Lunar Magma Ocean Paul Warren

29 Slide 29 An Oblique Collision between the proto- Earth and a Mars-sized impactor 4.2 minutes 8.4 minutes12.5 minutes Kipp and Melosh (86), Tonks and Melosh (93)

30 Slide 30 Giant Impact during Accretion Don Davis artwork

31 Slide 31 Lunar Assembly outside Roche Limit

32 Slide 32 Lower Mantle Solidus d u s ( u p p e r b o u n d ) CoreT Multianvil Peridotite Solidus Olivine shock melting M a g n e s i o w ü s t i t e m e l t i n g Zerr et al (98), Holland & Ahrens (97) Diamond Anvil Peridotite Solidus

33 Slide 33 0 Depth km Pressure GPa 500 750 250 15 22.5 0 7.5 Pressure GPa after Carlson, 1994 No Crystal Settling Perovskite Settling Low Mg/Si Dunite High Mg/Si Liquid 15 22.5 0 7.5 Crystal Cummulates t Quench Crust Quench Crust Magma Ocean Crystallization Cummulates should give a chemical signature

34 Slide 34 Useful Isotope Systems Parent nuclide 182Hf 146Sm 147Sm 176Lu 187Re 232Th 235U 238U Daughter nuclide 182W 142Nd 143Nd 176Hf 187Os 208Pb 207Pb 206Pb Half-life 9 Ma 103 Ma 106 Ga 35.9 Ga 42.2 Ga 14.01 Ga 0.7038 Ga 4.468 Ga Tracer ratio (daughter/stable) 182 W/ 184 W 142 Nd/ 144 Nd 143 Nd/ 144 Nd 176 Hf/ 177 Hf 187 Os/ 188 Os 208 Pb/ 204 Pb 207 Pb/ 204 Pb 206 Pb/ 204 Pb

35 Slide 35 Possible sources for chemical evidence of the deep mantle 1) The composition of Archean komatiites 2) The composition of modern plume lavas (Ocean Island Basalts) 3) Lower-mantle inclusions in diamonds? From Don Francis, McGill University

36 Slide 36. 1400 1600 1800 2000 2200 2400 2600 051015202530 L + Maj + Mw L + MgPv + Mw Liquidus Solidus phase relations after Herzberg and Zhang (1996) Pressure (GPa) Temperature (°C) 3.5 Ga (Barberton) 2.7 Ga (Boston Twp, Ont) 2.7 Ga (Munro-type) 0.8 Ga (Gorgona) Present Mantle Adiabat KLB peridotite and komatiite source paths

37 Slide 37 Hawaii Plume

38 Slide 38 Fingerprints of the Residual Assemblage 0.1 1 10 Pyrope 60 km 400 km 670 km NdSmLuHf NdSmLuHf NdSmLuHf NdSmLuHf 0.1 1 10 Perovskite 0.1 1 10 Majorite 0.1 1 10 Cpx D mineral melt The concentration Of an element in the mineral over that in the melt Mineral/Melt Partition Coeficients Two Parent_Daughter Isotopic Systems

39 Slide 39 Walker-style Cylindrical Multi-anvil

40 Slide 40 Carnegie Multi-anvil Press

41 Slide 41 Assembly

42 Slide 42 26 GPa, 2450°C, 20 min, KLB-1 + trace elements 200 microns Diamond Backscattered Electron Topographic Image Epoxy (Ion probe pits visible) Diamond

43 Slide 43 26 GPa, 2450°C, 20 min, KLB-1 + trace elements Diamond Backscattered Electron Composition Image Epoxy Diamond

44 Slide 44 26 GPa, 2450°C, 20 min, KLB-1 + trace elements Diamond Epoxy Diamond 25 microns Magnesiowüstite Fe-Mg perovskite Backscattered Electron Composition Image

45 Slide 45 Assumptions: A hot initial Earth (a magma ocean into lower mantle) A chondritic trace element bulk composition Constant partition coefficient's (pressure, temperature, composition) Are signs of magma ocean crystallization present in rocks we can sample?

46 Slide 46 Composition of the Remaining Melt

47 Slide 47 Composition of the Remaining Melt

48 Slide 48 Early Archean Zircons John Hanchar, GWU Pilbara Craton, Australia CL Image, 5mm field of view Zircons contain high Hf contents, and hence preserve their initial Hf isotopic ratios

49 Slide 49 Composition of the Remaining Melt

50 Slide 50 Composition of the Remaining Melt

51 Slide 51 Temp

52 Slide 52 Conclusions We performed low temperature gradient, diamond-encapsulated experiments at: 25-27 GPa, 2400-2500°C for 8 to 40 minutes with trace element concentrations of 60 ppm added to natural KLB-1 peridotite 15-25 micron diameter crystals were obtained Partition coefficients for (Mg, Fe) perovskite/melt determined using the ion probe. For those trace elements previously determinedat higher concentrations and shorter experiments, these partition coefficients agree in the sense of compatibility for Pv, but not in the magnitude. LREE are incompatible, HREE less so, and Yb and Lu are compatible. The HFSE are compatible in Pv, with Hf slightly more compatible than Lu. U, Th, Pb are all incompatible, but the Kd for U/Th equals 2. These elements are very incompatible in magnesiowustite.

53 Slide 53 Oxygen  -Notation 18 O/ 16 O sample - 18 O/ 16 O SMOW  18 O = 18 O/ 16 O SMOW X 1000 A scaled deviation from a standard SMOW: Standard Mean Ocean Water abundance 16 O99.76% 17 O0.037% 18 O0.200%

54 Slide 54 Sulfur  -Notation 33 S/ 32 S sample - 33 S/ 32 S CDT  33 S = 33 S/ 32 S CDT X 1000 A scaled deviation from a standard CDT: Canyon Diablo Troilite abundance 32 S95% 33 S0.75% 34 S4.2% 36 S0.017%

55 Slide 55 Composition Map

56 Slide 56 Ablation Pits in MA-85 Text

57 Slide 57 Pit Close-Up SEM Image (surface ejecta) BSE Image (Composition)

58 Slide 58 Partitioning 0.001 0.010 0.100 1.000 10.000 Li Be Sr Ba La Ce Nd Sm Eu Yb Lu Ti Zr Nb Hf Magnesiowüstite Perovskite REEHFSE KLB Peridotite, 25.5 GPa, 2400°C D mineral melt

59 Slide 59. 1101001000 Concentration in Melt, ppm 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 Concentration in Majorite / Melt Nd Sm ±10% error bars Henry’s Law Test Partition Coefficients Independent of Concentration

60 Slide 60 Comparison with the Ion Probe

61 Slide 61 Perovskite/Melt Partitioning: Literature 0.001 0.010 0.100 1.000 10.000 Li Be Sr Ba REEHFSE Ti Zr Nb Hf La Nd Eu Lu Ce Sm Yb Sc D mineral melt

62 Slide 62 Partitioning Sources CaO-MgO-SiO 2 23 GPa 2400°C (Drake et al., 93) Re Capsule, 3 minutes Chondritic melt 24.5 GPa 2300°C (Kato et al., 88) Our KLB-1 partitioning 25.5 GPa, 2400°C CaO-MgO-SiO 2 -H 2 O-F 2 O 23 GPa 1650°C (Gasparik & Drake, 95) Re Capsule, 20 minutes Diamond Capsules, 20 minutes SIMS Electron Probe Kimberlitic melt 25 GPa 2200°C (Kato et al., 96) Re Capsule, 2 minutes Pt Capsule, 3 minutes Representative Analytical error Representative Analytical error

63 Slide 63 Partitioning with ion size 0.01 0.1 1 10 0.50.70.91.11.31.5 Cation Radius (Å) Si Ti Hf Zr Sc Lu Yb Sm Nd Ce La +3 cations, 8-fold coord. +4 cations, 6-fold coord. D mineral melt

64 Slide 64 Pits

65 Slide 65 Perovskite/Melt Partitioning 0.001 0.010 0.100 1.000 10.000 Li Be Sr Ba REEHFSE Ti Zr Nb Hf La Nd Eu Lu Ce Sm Yb Sc D mineral melt

66 Slide 66 Comparison of Assemblies

67 Slide 67 Element2 and NewWave Laser

68 Slide 68 NBS-610 Standard

69 Slide 69 MA-85 melt (pt#6)

70 Slide 70 MA-85 perovskite (pt#8)

71 Slide 71 MA-85 perovskite (pt#15)

72 Slide 72 Map

73 Slide 73 Mass-Dependent Fractionation Wiechert et al (2001) Science 294: 345

74 Slide 74 Ray Paths

75 Slide 75 D’’ Heterogeneity

76 Slide 76 Great Earthquakes


Download ppt "Slide 1 Pre Type II Nucleosynthesis (s-process) 21 solar mass star ratio to solar abundance Rauscher et al. (2002)"

Similar presentations


Ads by Google