Download presentation
Presentation is loading. Please wait.
Published byAndrea Sullivan Modified over 8 years ago
2
CS 240Chapter 10 – TreesPage 177 10 Chapter 10 Trees The tree abstract data type provides a hierarchical to the representation of certain types of relationships. The tree abstract data type provides a hierarchical structure to the representation of certain types of relationships. Array Implementation Array Implementation Applications Applications Linked List Implementation Linked List Implementation General Trees General Trees Binary Search Trees Binary Search Trees
3
CS 240Chapter 10 – TreesPage 178 The Binary Tree ADT The binary tree abstract data type is a structure in which entries are configured to have at most two offspring. Root Leaf Node Leaf Binary Tree In addition to constructors and a destructor, the binary tree ADT needs the following functions: isEmpty - to determine whether the binary tree contains any entries insert - to insert a new entry at the appropriate location within the tree traverse - some mechanism to explore the tree The binary aspect of this structure makes it particularly useful in applications where individual choices are needed, making it possible to recursively proceed to the right offspring or to the left offspring of the current node. For example, video games frequently present a player with two options, using a game tree to keep track of the alternatives selected by the player.
4
CS 240Chapter 10 – TreesPage 179 Basic Binary Tree Terminology value leaf nodes sibling nodes parent node child node
5
CS 240Chapter 10 – TreesPage 180 Application: The Heap 1000 875650 325700575 400 25 250 350 425150 275 75 100 Keeps the data in each node greater than or equal to the data in both of its subtrees.
6
CS 240Chapter 10 – TreesPage 181 Application: The Binary Search Tree Keeps the data in each node's left subtree less than or equal to the node's data, and the data in the node's right subtree greater than or equal to the node's data. 72 4190 235074 8214 97 7998 67 31 9938
7
CS 240Chapter 10 – TreesPage 182 Application: The Binary Expression Tree Strategically places the binary operators in the upper nodes, and the primitive operands in the leaf nodes. Example: (A+B)/C+D*((E+F)%(G-H))++//** ++CCDD ++AA % EEGGFFHH --BB
8
CS 240Chapter 10 – TreesPage 183 Array Implementation Of Binary Tree Place root in slot #0 Place left child of slot k's node in slot #(2*k+1) Place right child of slot k's node in slot #(2*k+2) Locate parent of slot k's node in slot #((k-1)/2)
9
CS 240Chapter 10 – TreesPage 184 Array Implementation Of Binary Tree // Class declaration file: bintree.h // // This file contains the array implementation of the binary tree ADT. // #include using namespace std; #ifndef BIN_TREE_H // DECLARATION SECTION FOR THE BINARY TREE CLASS TEMPLATE const int MAX_TREE_NODES = 15; template class binary_tree { public: // Class constructors binary_tree(); binary_tree(const binary_tree &bt); // Member functions bool isEmpty(); void insert(const E &item); void preorder_traverse(int location); void inorder_traverse(int location); void postorder_traverse(int location); binary_tree & operator = (const binary_tree &bt); void display_array(); // Class declaration file: bintree.h // // This file contains the array implementation of the binary tree ADT. // #include using namespace std; #ifndef BIN_TREE_H // DECLARATION SECTION FOR THE BINARY TREE CLASS TEMPLATE const int MAX_TREE_NODES = 15; template class binary_tree { public: // Class constructors binary_tree(); binary_tree(const binary_tree &bt); // Member functions bool isEmpty(); void insert(const E &item); void preorder_traverse(int location); void inorder_traverse(int location); void postorder_traverse(int location); binary_tree & operator = (const binary_tree &bt); void display_array();
10
CS 240Chapter 10 – TreesPage 185 protected: // Data members struct node// The node structure is {// set up so that if the bool vacant;// vacant field is FALSE, E data;// then the data field is };// irrelevant. node tree[MAX_TREE_NODES];// Array of nodes int number_nodes;// Number of nodes in tree // Member function void insertStartingHere(const E &item, int location); }; // IMPLEMENTATION SECTION FOR THE BINARY TREE CLASS TEMPLATE ////////////////////////// // Default constructor. // ////////////////////////// template binary_tree ::binary_tree() { number_nodes = 0; for (int i = 0; i < MAX_TREE_NODES; i++) tree[i].vacant = true; } protected: // Data members struct node// The node structure is {// set up so that if the bool vacant;// vacant field is FALSE, E data;// then the data field is };// irrelevant. node tree[MAX_TREE_NODES];// Array of nodes int number_nodes;// Number of nodes in tree // Member function void insertStartingHere(const E &item, int location); }; // IMPLEMENTATION SECTION FOR THE BINARY TREE CLASS TEMPLATE ////////////////////////// // Default constructor. // ////////////////////////// template binary_tree ::binary_tree() { number_nodes = 0; for (int i = 0; i < MAX_TREE_NODES; i++) tree[i].vacant = true; }
11
CS 240Chapter 10 – TreesPage 186 // Copy constructor. // template binary_tree ::binary_tree(const binary_tree &bt) { number_nodes = bt.number_nodes; for (int i = 0; i < MAX_TREE_NODES; i++) if (bt.tree[i].vacant) tree[i].vacant = true; else tree[i] = bt.tree[i]; } // Assignment operator. // template binary_tree & binary_tree ::operator = (const binary_tree &bt) { number_nodes = bt.number_nodes; for (int i = 0; i < MAX_TREE_NODES; i++) if (bt.tree[i].vacant) tree[i].vacant = true; else tree[i] = bt.tree[i]; return *this; } // Copy constructor. // template binary_tree ::binary_tree(const binary_tree &bt) { number_nodes = bt.number_nodes; for (int i = 0; i < MAX_TREE_NODES; i++) if (bt.tree[i].vacant) tree[i].vacant = true; else tree[i] = bt.tree[i]; } // Assignment operator. // template binary_tree & binary_tree ::operator = (const binary_tree &bt) { number_nodes = bt.number_nodes; for (int i = 0; i < MAX_TREE_NODES; i++) if (bt.tree[i].vacant) tree[i].vacant = true; else tree[i] = bt.tree[i]; return *this; }
12
CS 240Chapter 10 – TreesPage 187 // Empty function. // template bool binary_tree ::isEmpty() { return (number_nodes == 0); } // Insert function; inserts via insertStartingHere function. // template void binary_tree ::insert(const E &item) { assert(number_nodes < MAX_TREE_NODES); // Room in tree? insertStartingHere(item, 0); number_nodes++; } // Preorder_traverse function; prints tree contents in preorder. // template void binary_tree ::preorder_traverse(int location) { if ((location < MAX_TREE_NODES) && (!tree[location].vacant)) { cout << tree[location].data << '\t'; preorder_traverse(2 * location + 1); preorder_traverse(2 * location + 2); } return; } // Empty function. // template bool binary_tree ::isEmpty() { return (number_nodes == 0); } // Insert function; inserts via insertStartingHere function. // template void binary_tree ::insert(const E &item) { assert(number_nodes < MAX_TREE_NODES); // Room in tree? insertStartingHere(item, 0); number_nodes++; } // Preorder_traverse function; prints tree contents in preorder. // template void binary_tree ::preorder_traverse(int location) { if ((location < MAX_TREE_NODES) && (!tree[location].vacant)) { cout << tree[location].data << '\t'; preorder_traverse(2 * location + 1); preorder_traverse(2 * location + 2); } return; }
13
CS 240Chapter 10 – TreesPage 188 ///////////////////////////////////////////////////////////////// // Inorder_traverse function; prints tree contents in inorder. // ///////////////////////////////////////////////////////////////// template void binary_tree ::inorder_traverse(int location) { if ((location < MAX_TREE_NODES) && (!tree[location].vacant)) { inorder_traverse(2 * location + 1); cout << tree[location].data << '\t'; inorder_traverse(2 * location + 2); } return; } ///////////////////////////////////////////////////////////////////// // Postorder_traverse function; prints tree contents in postorder. // ///////////////////////////////////////////////////////////////////// template void binary_tree ::postorder_traverse(int location) { if ((location < MAX_TREE_NODES) && (!tree[location].vacant)) { postorder_traverse(2 * location + 1); postorder_traverse(2 * location + 2); cout << tree[location].data << '\t'; } return; } ///////////////////////////////////////////////////////////////// // Inorder_traverse function; prints tree contents in inorder. // ///////////////////////////////////////////////////////////////// template void binary_tree ::inorder_traverse(int location) { if ((location < MAX_TREE_NODES) && (!tree[location].vacant)) { inorder_traverse(2 * location + 1); cout << tree[location].data << '\t'; inorder_traverse(2 * location + 2); } return; } ///////////////////////////////////////////////////////////////////// // Postorder_traverse function; prints tree contents in postorder. // ///////////////////////////////////////////////////////////////////// template void binary_tree ::postorder_traverse(int location) { if ((location < MAX_TREE_NODES) && (!tree[location].vacant)) { postorder_traverse(2 * location + 1); postorder_traverse(2 * location + 2); cout << tree[location].data << '\t'; } return; }
14
CS 240Chapter 10 – TreesPage 189 // Display_array function; prints tree contents as an // // array, printing the word vacant if a node is vacant. // template void binary_tree ::display_array() { int index; for (int i = 0; i < MAX_TREE_NODES/5; i++) { for (int j = 0; j < 5; j++) { index = (MAX_TREE_NODES/5)*j+i; cout << setw(2) << index << " = "; if (tree[index].vacant) cout << setw(6) << "vacant" << setw(3) << ""; else cout << setw(6) << tree[index].data << setw(3) << ""; } cout << endl; } // Display_array function; prints tree contents as an // // array, printing the word vacant if a node is vacant. // template void binary_tree ::display_array() { int index; for (int i = 0; i < MAX_TREE_NODES/5; i++) { for (int j = 0; j < 5; j++) { index = (MAX_TREE_NODES/5)*j+i; cout << setw(2) << index << " = "; if (tree[index].vacant) cout << setw(6) << "vacant" << setw(3) << ""; else cout << setw(6) << tree[index].data << setw(3) << ""; } cout << endl; }
15
CS 240Chapter 10 – TreesPage 190 /////////////////////////////////////////////////////////////// // InsertStartingHere function; inserts item into tree using // // ordering (i.e., inserting smaller values to the left and // // larger values to the right). // /////////////////////////////////////////////////////////////// template void binary_tree ::insertStartingHere(const E &item, int location) { assert(location < MAX_TREE_NODES); // Must be legitimate // array index if (tree[location].vacant) { tree[location].data = item; tree[location].vacant = false; } else if (item < tree[location].data) insertStartingHere(item, 2 * location + 1); else insertStartingHere(item, 2 * location + 2); } #define BIN_TREE_H #endif /////////////////////////////////////////////////////////////// // InsertStartingHere function; inserts item into tree using // // ordering (i.e., inserting smaller values to the left and // // larger values to the right). // /////////////////////////////////////////////////////////////// template void binary_tree ::insertStartingHere(const E &item, int location) { assert(location < MAX_TREE_NODES); // Must be legitimate // array index if (tree[location].vacant) { tree[location].data = item; tree[location].vacant = false; } else if (item < tree[location].data) insertStartingHere(item, 2 * location + 1); else insertStartingHere(item, 2 * location + 2); } #define BIN_TREE_H #endif
16
CS 240Chapter 10 – TreesPage 191 Example Driver For The Array Implementation // Program file: treedriv.cpp // // This program illustrates the // // creation of a binary tree. // #include #include "bintree.h" using namespace std; void print_tree(binary_tree &tree); // The main function queries the // // user for new tree elements. // void main() { binary_tree tree; int number; cout << "Enter a number: "; cin >> number; while (number > 0) { tree.insert(number); tree.display_array(); cout << "Enter a number: "; cin >> number; } // Program file: treedriv.cpp // // This program illustrates the // // creation of a binary tree. // #include #include "bintree.h" using namespace std; void print_tree(binary_tree &tree); // The main function queries the // // user for new tree elements. // void main() { binary_tree tree; int number; cout << "Enter a number: "; cin >> number; while (number > 0) { tree.insert(number); tree.display_array(); cout << "Enter a number: "; cin >> number; } print_tree(tree); } // The print_tree function outputs // // the final contents of the tree, // // first by displaying the entire // // array, then by printing out the // // non-vacant tree elements in in- // // order, preorder, and postorder. // void print_tree(binary_tree &tree) { cout << "Array contents: \n"; tree.display_array(); cout << “\nInorder traversal: \n"; tree.inorder_traverse(0); cout << “\nPreorder traversal: \n"; tree.preorder_traverse(0); cout << “\nPostorder traversal: \n"; tree.postorder_traverse(0); cout << endl << endl; } print_tree(tree); } // The print_tree function outputs // // the final contents of the tree, // // first by displaying the entire // // array, then by printing out the // // non-vacant tree elements in in- // // order, preorder, and postorder. // void print_tree(binary_tree &tree) { cout << "Array contents: \n"; tree.display_array(); cout << “\nInorder traversal: \n"; tree.inorder_traverse(0); cout << “\nPreorder traversal: \n"; tree.preorder_traverse(0); cout << “\nPostorder traversal: \n"; tree.postorder_traverse(0); cout << endl << endl; }
17
CS 240Chapter 10 – TreesPage 192
18
CS 240Chapter 10 – TreesPage 193 A Good Use For The Array Implementation: Heaps // Class declaration file: heap.h // // This file contains the array implementation of the heap ADT. // #include "bintree.h" #include using namespace std; #ifndef HEAP_H // DECLARATION SECTION FOR THE HEAP CLASS TEMPLATE template class heap: public binary_tree { public: // Class constructors heap(); heap(const heap &h); // Member functions void insert(const E &item); heap & operator = (const heap &h); };
19
CS 240Chapter 10 – TreesPage 194 // IMPLEMENTATION SECTION FOR // THE HEAP CLASS TEMPLATE ////////////////////////// // Default constructor. // ////////////////////////// template heap ::heap(): binary_tree () { } /////////////////////// // Copy constructor. // /////////////////////// template heap ::heap(const heap &h) { number_nodes = h.number_nodes; for (int i=0; i<MAX_TREE_NODES; ++i) { if (h.tree[i].vacant) tree[i].vacant = true; else tree[i] = h.tree[i]; } ////////////////////////// // Assignment operator. // ////////////////////////// template heap & heap ::operator = (const heap &h) { number_nodes = h.number_nodes; for (int i=0; i<MAX_TREE_NODES; ++i) { if (h.tree[i].vacant) tree[i].vacant = true; else tree[i] = h.tree[i]; } return *this; }
20
CS 240Chapter 10 – TreesPage 195 ///////////////////////////////////////////////////////////////////////// // Insert function; inserts into the heap to retain the heap structure // // and to ensure non-fragmentation of the array structure, moving low // // elements down when a high element is inserted. // ///////////////////////////////////////////////////////////////////////// template void heap ::insert(const E &item) { int location, parent; assert(number_nodes < MAX_TREE_NODES); // Now walk the new item up the tree, starting at location location = number_nodes; parent = (location-1) / 2; while ((location > 0) && (tree[parent].data < item)) { tree[location] = tree[parent]; location = parent; parent = (location-1) / 2; } tree[location].data = item; tree[location].vacant = false; number_nodes++; } #define HEAP_H #endif
21
CS 240Chapter 10 – TreesPage 196 Example Driver For The Heap Implementation // Program file: heapdriv.cpp // // This program illustrates // // the creation of a heap. // #include #include "heap.h" using namespace std; void print_heap(heap &tree); // The main function queries the // // user for new heap elements. // void main() { heap tree; int number; cout << "Enter a number: "; cin >> number; while (number > 0) { tree.insert(number); tree.display_array(); cout << "Enter a number: "; cin >> number; } print_heap(tree); } // The print_heap function outputs // // the final contents of the heap, // // first by displaying the entire // // array, then by printing out the // // non-vacant heap elements in in- // // order, preorder, and postorder. // void print_heap(heap &tree) { cout << "Array contents: \n"; tree.display_array(); cout << "\nInorder traversal: \n"; tree.inorder_traverse(0); cout << " \nPreorder traversal: \n"; tree.preorder_traverse(0); cout << " \nPostorder traversal: n"; tree.postorder_traverse(0); cout << endl << endl; }
22
CS 240Chapter 10 – TreesPage 197
23
CS 240Chapter 10 – TreesPage 198 Linked List Implementation Of Binary Tree // Class declaration file: bintree.h // This file contains the array implementation of the binary tree ADT. // #ifndef BIN_TREE_H #include using namespace std; // DECLARATION SECTION FOR LINKED VERSION OF BINARY TREE template class binary_tree { public: // Class constructors and destructor binary_tree(); binary_tree(const binary_tree &bt); ~binary_tree(); // Member functions bool isEmpty() const; void insert(const E &item); void preorderTraverse(ofstream &os) const; void inorderTraverse(ofstream &os) const; void postorderTraverse(ofstream &os) const; binary_tree & operator = (const binary_tree &bt);
24
CS 240Chapter 10 – TreesPage 199 protected: // Data members struct node; typedef node* node_ptr; struct node { E data; node_ptr left; node_ptr right; }; node_ptr root; // Member functions node_ptr get_node(const E &data); void insertIntoTree(node_ptr &treeRoot, const E &data); void copyTree(node_ptr treeRoot) const; void destroyTree(node_ptr treeRoot); void preorderOutput(node_ptr treeRoot, ofstream &os) const; void inorderOutput(node_ptr treeRoot, ofstream &os) const; void postorderOutput(node_ptr treeRoot, ofstream &os) const; };
25
CS 240Chapter 10 – TreesPage 200 // IMPLEMENTATION SECTION FOR LINKED VERSION OF BINARY TREE // Default constructor. // template binary_tree ::binary_tree() { root = NULL; } // Copy constructor. // template binary_tree ::binary_tree(const binary_tree &bt) { root = NULL; copyTree(bt.root); } // Assignment operator. // template binary_tree & binary_tree ::operator = (const binary_tree &bt) { root = NULL; copyTree(bt.root); return *this; }
26
CS 240Chapter 10 – TreesPage 201 // Function copyTree: Starting at the node pointed to by // // parameter treeRoot, this function recursively copies the // // elements of an existing tree into the *this tree. By // // proceeding in a preorder fashion, this function ensures // // that the elements of *this will correspond exactly (in // // value and position) to the elements of the existing tree. // template void binary_tree ::copyTree(node_ptr treeRoot) const { if (treeRoot != NULL) { insert(treeRoot->data); copyTree(treeRoot->left); copyTree(treeRoot->right); } // Destructor. // template binary_tree ::~binary_tree() { destroyTree(root); root = NULL; }
27
CS 240Chapter 10 – TreesPage 202 // Function destroyTree: returns all memory associated with // // the tree to the system heap, by recursively destroying // // the two subtrees and then deleting the root. // template void binary_tree ::destroyTree(node_ptr treeRoot) { if (treeRoot != NULL) { destroyTree(treeRoot->left); destroyTree(treeRoot->right); delete treeRoot; } // Empty function. // template bool binary_tree ::isEmpty() const { return root == NULL; }
28
CS 240Chapter 10 – TreesPage 203 // Insert function. // template void binary_tree ::insert(const E &item) { insertIntoTree(root, item); } // Function insertIntoTree: recursively inserts parameter // // item into tree using binary search tree assumption. // template void binary_tree ::insertIntoTree(node_ptr &treeRoot, const E &item) { if (treeRoot == NULL) treeRoot = get_node(item); else if (item data) insertIntoTree(treeRoot->left, item); else insertIntoTree(treeRoot->right, item); }
29
CS 240Chapter 10 – TreesPage 204 // Function preorderTraverse. // template void binary_tree ::preorderTraverse(ofstream &os) const { preorderOutput(root, os); } // Function preorderOutput: Outputs contents of // // the tree into parameterized file by recursively // // traversing the tree in preorder. // template void binary_tree ::preorderOutput(node_ptr treeRoot, ofstream &os) const { if (treeRoot != NULL) { os data << endl; preorderOutput(treeRoot->left, os); preorderOutput(treeRoot->right, os); }
30
CS 240Chapter 10 – TreesPage 205 // Function inorderTraverse. // template void binary_tree ::inorderTraverse(ofstream &os) const { inorderOutput(root, os); } // Function inorderOutput: Outputs contents of // // the tree into parameterized file by recursively // // traversing the tree in inorder. // template void binary_tree ::inorderOutput(node_ptr treeRoot, ofstream &os) const { if (treeRoot != NULL) { inorderOutput(treeRoot->left, os); os data << endl; inorderOutput(treeRoot->right, os); }
31
CS 240Chapter 10 – TreesPage 206 // Function postorderTraverse. // template void binary_tree ::postorderTraverse(ofstream &os) const { postorderOutput(root, os); } // Function postorderOutput: Outputs contents of // // the tree into parameterized file by recursively // // traversing the tree in postorder. // template void binary_tree ::postorderOutput(node_ptr treeRoot, ofstream &os) const { if (treeRoot != NULL) { postorderOutput(treeRoot->left, os); postorderOutput(treeRoot->right, os); os data << endl; }
32
CS 240Chapter 10 – TreesPage 207 // Function get_node: Dynamically allocates space for a new // // tree node, placing the parameter item's value into the // // new node, and initializing both of its pointers to NULL. // template typename binary_tree ::node_ptr binary_tree ::get_node(const E &item) { node_ptr temp = new node; assert(temp != NULL); temp->data = item; temp->left = NULL; temp->right = NULL; return temp; } #define BIN_TREE_H #endif
33
CS 240Chapter 10 – TreesPage 208 Example Driver For The Linked List Implementation // Program file: testtree.cpp // This program illustrates working // with a binary tree. The input // consists of an unordered list of // integers from a file. The // output consists of three files // containing the preorder, inorder, // and postorder traversals of the // binary search tree that is con- // structed from the input integers. #include #include "bintree.h" using namespace std; void main() { int number; ifstream input_file; ofstream pre_file; ofstream in_file; ofstream post_file; binary_tree tree; input_file.open("numbers.txt"); pre_file.open("preordered.txt"); in_file.open("inordered.txt"); post_file.open("postordered.txt"); input_file >> number; while (!input_file.eof()) { tree.insert(number); input_file >> number; } input_file.close(); tree.preorderTraverse(pre_file); tree.inorderTraverse(in_file); tree.postorderTraverse(post_file); pre_file.close(); in_file.close(); post_file.close(); return; }
34
CS 240Chapter 10 – TreesPage 209 File Contents numbers.txt 79 54 47 43 13 49 78 23 24 78 42 76 31 74 29 47 79 14 68 96 preordered.txt 79 54 47 43 13 23 14 24 42 31 29 49 47 78 76 74 68 78 79 96 inordered.txt 13 14 23 24 29 31 42 43 47 49 54 68 74 76 78 79 96 postordered.txt 14 29 31 42 24 23 13 43 47 49 47 68 74 76 78 54 96 79 79 79 96 54 78 7876 74 68 47 49 47 13 23 14 24 42 31 29 43
35
CS 240Chapter 10 – TreesPage 210 New Recursive Traversal Member Function // Kick off the recursion to count the binary tree’s pairs of “twins” // (i.e., the number of offspring pairs with identical values). template int binary_tree ::twinTraverse() { return twinCount(root); } // Recursive member function to determine the number of twin offspring // pairs, starting with the subtree rooted at the parameter treeRoot. template int binary_tree ::twinCount(node_ptr treeRoot) { if (treeRoot == NULL) return 0; else if ((treeRoot->left != NULL) && (treeRoot->right != NULL) && (treeRoot->left->data == treeRoot->right->data)) return (1 + twinCount(treeRoot->left) + twinCount(treeRoot->right)); else return (twinCount(treeRoot->left) + twinCount(treeRoot->right)); }
36
CS 240Chapter 10 – TreesPage 211 2 2 6 6 8 8 7 7 3 3 4 4 5 5 1 1 8 8 2 2 6 6 4 4 7 7 3 3 5 5 1 1 8 8 2 2 6 6 7 7 5 5 3 3 4 4 1 1 8 8 2 2 6 6 7 7 5 5 3 3 4 4 1 1 8 8 2 2 7 7 3 3 6 6 4 4 5 5 1 1 8 8 2 2 6 6 7 7 3 3 1 1 4 4 5 5 8 8 6 6 7 7 2 2 3 3 4 4 5 5 1 1 8 8 6 6 7 7 2 2 3 3 4 4 5 5 1 1 General Trees What about non-binary trees? Application Example: Game Trees 8 8 2 2 6 6 7 7 3 3 4 4 5 5 1 1 8 8 6 6 7 7 2 2 3 3 4 4 5 5 1 1 8 8 2 2 6 6 7 7 3 3 4 4 5 5 1 1 8 8 2 2 6 6 7 7 5 5 3 3 4 4 1 1 8 8 2 2 6 6 7 7 3 3 4 4 5 5 1 1
37
CS 240Chapter 10 – TreesPage 212 How would general trees be implemented? Common approach: Use binary trees, with offspring and sibling pointers A A D D F F I I N N M M L L K K E E J J B B C C H H G G A A D D F F I I N N M M L L K K E E J J B B C C H H G G Actual tree Binary representation, with left pointers for “first offspring” and right pointers for “next sibling” Binary representation, with left pointers for “first offspring” and right pointers for “next sibling”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.