Presentation is loading. Please wait.

Presentation is loading. Please wait.

Research for potential threat of organic pollutants in Japan Sea Estimation of source contributions and kinetic analysis of POPs in Japan Sea Hyogo Prefectural.

Similar presentations


Presentation on theme: "Research for potential threat of organic pollutants in Japan Sea Estimation of source contributions and kinetic analysis of POPs in Japan Sea Hyogo Prefectural."— Presentation transcript:

1 Research for potential threat of organic pollutants in Japan Sea Estimation of source contributions and kinetic analysis of POPs in Japan Sea Hyogo Prefectural Institute of Environmental Sciences (HIES) Chisato MATSUMURAChief of environmental safety division Masahiro TSURUKAWASenior researcher Yuuki Haga Researcher Takeshi Nakano Research Professor at Osaka University Collaborator Masayuki KunugiTokyo University of Science

2 Background Global Technical HCH usage (Yi-Fan Li etc) Japan

3 China Chlordane 16,000 ( ~ 1986) 9,000 (1950 ~ ) Toxaphene- 20,660 (1970 ~ 1985) HCB- 79,278 (1958 ~ 2004) DDT53,000 (1948 ~ 1970) 400,000 (1950 ~ ) 20% of the total world usage HCH389,000 (1948 ~ 1971) 49,000,000 ( ~ 1983) 33% of the total world usage Background POPs usage in Japan and China

4 1. POPs concentration 2. Isomer fingerprints of POPs 3. Enantiomer ratio of POPs Objective and means Sea water POPs in the oceans Estimation of source contributions and kinetic analysis of POPs in Japan Sea

5 Target Ocean Area Okhotsk Sea Japan Sea The Pacific East China Sea

6 Target POPs Target Chiral Compound H Cl H H Cl H Cl Cl Cl H Cl H H Cl H H Cl H Cl Cl Cl H Cl H (-) (+) α - HCH

7 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 13 14 15 16 17 19 18 1 1 2 2 3 3 1 1 2 2 3 3 Sampling point No.1 ~ No.19 Air sampling 1 2009’s Survey (2009.9 ~ 10)

8 2010’s Survey Chang Jiang 2010.7 ~ 8 2010.9 ~ 10 2010.8

9 2011.10.13 start 2011.10.15 2011.10.16 2011.10.20 2011.10.21 2011.10.24 2011.10.14 Ocean current in the sea around Japan 2011’s Survey (2011.10)

10 Air sampling GB-100R+PUF+ACF×3 108 m 3 ( 300 L/min , 6hr ) Sampling Method Voluntary ship : ASKA- Ⅱ Sea water sampling PUF+ACF×3 50L ( 0.5 L/min ) GC-50H Water sampling

11 LC-Silica clean up Dehydration and concentration Hexane extration ASE extraction ( Acetone and DCM ) ASE extraction ( Acetone and DCM ) Dissolved organic compound Concentration to 100μL HRGC/HRMS (JEOL JMS-800D) SYS + Surrogate Concentration Particulate component PUF+ACF QMF Surrogate; 13C-POPs (2500pg) SYS ; 13C-PeCB#101(500pg) Analytical method

12 RESULT Ⅰ Concentration distribution Ⅱ Isomer pattern

13 Ratio of Dissolved and SS component ⇒ Most of POPs exist in dissolved phase

14 Concentration level(HCH) 2010 and 2011’s survey include the seas around Hokkaido, and higher than 2009’s result. ( reference : river in Japan ) MOE 2009’s POPs Monitoring (pg/L) range average α-HCH 14 ~ 560 74 γ-HCH 5.1 ~ 280 32 β-HCH 18 ~ 1,100 150

15 Concentration level(other POPs) ( reference : river in Japan ) MOE 2009’s POPs Monitoring range average o,p’-DDD 0.44 ~ 41 4.4 p,p’-DDD 1.4 ~ 140 14 o,p’-DDT 0.43 ~ 100 2.4 p,p’-DDT 0.81 ~ 440 9.2 HCB 2.4 ~ 180 15 t-chlordane 3.0 ~ 690 23 c-chlordane 4.4 ~ 710 29 t-nonachlor 2.7 ~ 530 20 c-nonachlor 1.4 ~ 210 7.1

16 Concentration distribution of HCH s Ave. 2300 2010’s survey 2011’s survey

17 2011’s survey (α/β-HCH ratio) β-HCH vapor pressure is lower and boiling point is higher than other isomers.

18 2011’s survey(α/γ-HCH ratio) Technical-HCH α/γ=4.3 ~ 5.0 Chang Jiang Sea around Hokkaido fresh pollution? or transferred from north polar reigion

19 Ocean Circulation in Okhotsk Sea

20 表層ブイからわかる 表層循環 アムール表層起源の 水の行方 ~高精度海洋循環モ デルから~ 海氷生成でできる高 密度水の行方 ~高精度海洋循環モ デルから~ 小サイズ版 Ocean Circulation in Okhotsk Sea http://www.lowtem.hokudai.ac.jp/joint/okh/movie.html 10 月に投下された粒子は、晩秋より強くなる東樺太海流に乗って 3 ヶ 月足らずで北海道沿岸まで到達する。 参考文献: Ohshima and Simizu (2008, J. Oceanogr.), Uchimoto et al.(2007, J. Oceanogr.)

21 DDT in sea water concentration(pg/L) ( reference : river in Japan ) MOE 2009’s POPs Monitoring range average o,p’-DDT 0.43 ~ 100 2.4 p,p’-DDT 0.81 ~ 440 9.2 2009’survey 2011’survey

22 ( reference : river in Japan ) MOE 2009’s POPs Monitoring range average t-chlordane 3.0 ~ 690 23 c-chlordane 4.4 ~ 710 29 range average median t-chlordane 11 ~ 54 23 21 c-chlordane 4 ~ 19 10 10 Chlordane in sea water concentration(pg/L) 2011’s survey

23 Nonachlor in sea water concentration(pg/L) range average median t-nonachlor 4 ~ 20 11 10 c-nonachlor 0 ~ 11 4 10 ( reference : river in Japan ) MOE 2009’s POPs Monitoring range average t-nonachlor 2.7 ~ 530 20 c-nonachlor 1.4 ~ 210 7.1 2011’s survey

24 range average median α-HCH 12 ~ 18 15 17 γ-HCH 6 ~ 11 8.6 10 β-HCH 1.2 ~ 2 1.5 1.4 ( reference : ambient air in Japan ) MOE 2009’s POPs Monitoring range average α-HCH 7.8 ~ 400 21 γ -HCH 1.5 ~ 55 5.6 β-HCH 0.31 ~ 24 1.8 (cold season) HCH in Air concentration (pg/m3)

25 Estimation of POPs resource by comparing with POPs isomer fingerprints Guangzhou Hong Kong Korea Japan Chicago 100pg/m 3 HCHs air concentration α γ Lindane (99% γ-HCH) Technical HCHs (60-70% α-HCH) POPs in the oceans

26 Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl trans-chlordane alpha-HCH H Cl H H Cl H Cl Cl Cl H Cl H Cl Cl Cl Cl C* Cl H o.p ’ -DDT Some POPs are chiral and present as racemates in the technical product. Enantiomer of POPs H Cl H H Cl H Cl Cl Cl H Cl H Cl Cl Cl Cl C* Cl H

27 Enantiomer Fraction (EF) EF = -------------- E(+) E(+)+ E(-) E(+) : (+) enantiomer peak area E(-) : (-) enantiomer peak area technical products EF = 0.5 metabolism EF > 0.5 racemates EF < 0.5 non-racemic residues The EF variation may distinguish POPs transfer of current use and that of past applications. (+) (-) (+) (-) (+) (-)

28 The chromatograms of alpha-HCH enantiomers P19-J Ⅱ (-)α (+)α β EF=0.42 Standard solution The sea water in Japan Sea γ (-)α (+)α EF=0.5 EF = ---------- E(+) E(+)+ E(-) alpha-HCH H Cl H H Cl H Cl Cl Cl H Cl H H Cl H H Cl H Cl Cl Cl H Cl H Preferential degradation of (+) in seawater

29 Downstream site of Chang Jiang Southwest Sakhalin Chang Jiang and the sea around Hokkaido ⇒ near racemic Previous survey( ~ 2010 ) 2011’s survey(EF value of α-HCH) No.18

30 Dechlorane Plus(DP) C18H12Cl12 Jiangsu of Chinese province in 2009 October Profile of DP Isomers Technical DP fsyn=0.40±0.01(Anpon) fsyn=0.20-0.36(OxyChem) fsyn=syn-isomer/total DP

31 Dechlorane Plus range 0.7 ~ 14 average 2.7 median 1.6 (reference) air 12 ~ 7,737pg/m 3 soil 5.11 ~ 13,400ng/g-dry (De-GAO WANG, Environ.Sci.Technol,2010,44,6608-6613) river water 0.2-2ng/L(Songhua river,Harbin) (Ed Sverko,Environ.Sci.Technol,2011, 45,5088-5098) Dechlorane Plus in seawater concentration(pg/L)

32 Dechlorane Plus in Air concentration(pg/m3) Dechlorane Plus range 0.7 ~ 3 average 1.4 median 1.3 1.5

33 range 0 ~ 0.4 2011’s Survey Dechlorane Plus in seawater fsyn ratio(-)

34 Conclusion Ⅰ. POPs concentration distribution was investigated. HCH concentration in the sea around Hokkaido and HCH, DDT,Chlordanes concentration in the area of Tsushima Straits is higher than other areas. Ⅱ. From a point of view of isomer analysis(α/γ ratio), Linden(γ-HCH) usage in China may influence the circumstances in Japan sea. Ⅲ. Using enantiomer analysis, it was clarified that α-HCH -EF value tend to decrease with latitude.

35 気象庁 日本近海 日別海流 http://www.data.kishou.go.jp/kaiyou/db/kaikyo/daily/current_jp. html

36

37 chlorinecomponentratio (%) Cl 6 α- chlordene0.7 γ- chlordene3 β- chlordene3.6 Cl 7 heptachlor4.8 Cl 8 MC-40.3 trans- chlordane18 MC-55.8 cis-chlordane16 Cl 9 MC-61.5 trans-nonachlor14 cis-nonachlor4.5 Basic component of technical chlordane in Japan

38 trans-Chlordane/cis-Chlordane ratio Tsushima Straits

39 Data range 5 ~ 325pg/L Average 49pg/L Median 14pg/L Chlorpyrifos in sea water concentration(pg/L) 2011’s survey


Download ppt "Research for potential threat of organic pollutants in Japan Sea Estimation of source contributions and kinetic analysis of POPs in Japan Sea Hyogo Prefectural."

Similar presentations


Ads by Google