Download presentation
Presentation is loading. Please wait.
Published byAmberlynn Pope Modified over 9 years ago
1
Status of GEO600 Benno Willke for the GEO600 team ESF Exploratory Workshop Perugia, September 2005
2
ESF 05 / GEO, B. Willke
3
container cluster 2005 Workshop Central Building Bathrooms Offices Control Room / Visitor Center
4
ESF 05 / GEO, B. Willke Tube / Trench
5
ESF 05 / GEO, B. Willke Clean Room / Control Room
6
ESF 05 / GEO, B. Willke Triple Pendulum Suspension
7
ESF 05 / GEO, B. Willke Thermal Noise / Monolithic Suspension Silicate (Hydroxy- Catalysis) Bonding Weld
8
ESF 05 / GEO, B. Willke reaction pendulum
9
ESF 05 / GEO, B. Willke 12W Laser modecleaner interferometer with „dual recycling“ detektor GEO 600 – optical layout
10
ESF 05 / GEO, B. Willke Dual Recycling Length Control
11
ESF 05 / GEO, B. Willke < 10 Hz > 10 Hz < 0.1Hz Michelson length control Reaction Pendulum: 3 coil-magnet actuators at intermediate mass, range ~ 100µm Electrostatic actuation on test mass bias 630V, range 0-900V= 3.5µm
12
ESF 05 / GEO, B. Willke Alignment Control differential wave-front sensing spot position control 4 degrees of freedom at MC 1 +4 at MC 2 +4 at MI (common mode) +2 at MI (differential mode) +2 at Signal-Recycling cavity 16 + 20 = 36
13
ESF 05 / GEO, B. Willke GEO 600 design sensitivity
14
ESF 05 / GEO, B. Willke Evolution of the GEO 600 Sensitivity
15
ESF 05 / GEO, B. Willke GEO600 Duty Cycle daterun nameduty cycle longest lock Jan 2002E775%3h 40min Aug 2002S198%121h Nov 2003 Jan 2004 S3-I (7days) S3-II(14 days) 95% 98% 95h Aug 2004 – Jan 2005 over night runs (51 days) 94% Mar 2005S497%52h
16
ESF 05 / GEO, B. Willke S4 Feb 22nd – March 23rd, 708 hours Two manned shifts/day (5-21 UTC), 1 „Expert-On-Duty“ 8-8UTC Fully automated overnight shifts; SMS alarms to ‚E-O-D‘ Locking status DAQS (DCUs running, frame making, timing, calibration) Temperatures Vacuum Instrumental duty cycle 97.5%, 95% w/o noisy period, 72%>10h Longest lock 52h
17
ESF 05 / GEO, B. Willke detector characterization Sensitivity Min/max spectrum of h(t) 15 BLRMS of h(t) Inspiral monitor Spectrogram of h(t) Calibration Data quality Chi2 Calibration parameters Bursts (HACRmon) Time frequency distribution SNR distribution Duration Bandwidth Lines (Linemon) Line cataloguing Harmonic identification Sideband identification
18
ESF 05 / GEO, B. Willke Typical S4 Sensitivity h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains
19
ESF 05 / GEO, B. Willke Calibration
20
ESF 05 / GEO, B. Willke On-line optical TF measurements actuator optical CAL P and Q h
21
ESF 05 / GEO, B. Willke Calibration radiation pressure calibrator ?
22
ESF 05 / GEO, B. Willke Photon Pressure Calibrator Good agreement with ESD calibration Wavelength: 1035 nm @ 20°C Max. power: 1.4 W, FWHM= 0.66nm
23
ESF 05 / GEO, B. Willke Optical Gain
24
ESF 05 / GEO, B. Willke Calibrated EP Quadrature Signals h [1/sqrt(Hz)]
25
ESF 05 / GEO, B. Willke Combining hP(t) and hQ(t) – results h [1/sqrt(Hz)] Get the best of h P and h Q plus a little extra!
26
ESF 05 / GEO, B. Willke Laser Michelson Interferometer Output Mode Cleaner Mode Cleaners 10W 1.6W 1500W (typ.) 2000W (max) at Beam Splitter 5W5W ~40mW T=0.09% Power Recycling Cavity: Mode matching>85% Finesse 8300 Linewidth 30 Hz 4/0.09%*1.6 = 7000 increase of power recycling factor
27
ESF 05 / GEO, B. Willke Thermal lensing in BS output mode pattern (PRMI) Directly after relocking f=20km A few minutes after relocking f= 8km → α≈0.3 +/- 0.05ppm/cm
28
ESF 05 / GEO, B. Willke GEO 600 design sensitivity
29
ESF 05 / GEO, B. Willke Tuning signal recycling to 300 Hz lock acquisition at 5kHz tuning needs to adjust of 6 parameters (look- up table) improved input file for simulations and how to transfer results to experiment achieved downtuning to 200Hz MI AA instability could be fixed
30
ESF 05 / GEO, B. Willke Interferometer Readout - Sidebands phase modualtor laser beam splitter mirror photo detector
31
ESF 05 / GEO, B. Willke Schnupp – Modulation phase modualtor laser beam splitter mirror photo detector
32
ESF 05 / GEO, B. Willke Gravitational Wave Side Bands phase modualtor laser beam splitter mirror photo detector
33
ESF 05 / GEO, B. Willke Detuned Signal Recycling phase modualtor laser beam splitter mirror photo detector
34
ESF 05 / GEO, B. Willke Unbalanced Sidebands
35
ESF 05 / GEO, B. Willke Signal Recycling digital digital loop allows for steep filter noise contribution reduced by up to a factor of 200
36
ESF 05 / GEO, B. Willke Sqrt circuits in MI loop ESD: F U^2 Sqrt circuits are necessary to give full linear force range for acquisition. Drawback: sqrt circuits are noisy 1µV/sqrt(Hz) (=100µV/sqrt(Hz) @ ESD)
37
ESF 05 / GEO, B. Willke MI loop whitening / dewhitening dewhiten Whiten Whitening right after mixer: zero 3.5 Hz pole 35 Hz Dewhitening for both split passes Passive dewhit- ening done in HV path (0-1kV)
38
ESF 05 / GEO, B. Willke sensitivity improvements since July
39
ESF 05 / GEO, B. Willke Evolution of the GEO 600 Sensitivity
40
ESF 05 / GEO, B. Willke Current vs. Design sensitivity
41
ESF 05 / GEO, B. Willke Non-stationary Noise
42
ESF 05 / GEO, B. Willke Near Future finish commissioning increase circulating power find source of optical losses in PR cavity increase MI loop gain between 1-10 Hz improve RF circuitry optimize stability join S5 in overnight/weekend mode until commissioning is finished fully join S5
43
ESF 05 / GEO, B. Willke
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.