Presentation is loading. Please wait.

Presentation is loading. Please wait.

Resolution of the Location Routing Problem C. Duhamel, P. Lacomme C. Prins, C. Prodhon Université de Clermont-Ferrand II, LIMOS, France Université de Technologie.

Similar presentations


Presentation on theme: "Resolution of the Location Routing Problem C. Duhamel, P. Lacomme C. Prins, C. Prodhon Université de Clermont-Ferrand II, LIMOS, France Université de Technologie."— Presentation transcript:

1 Resolution of the Location Routing Problem C. Duhamel, P. Lacomme C. Prins, C. Prodhon Université de Clermont-Ferrand II, LIMOS, France Université de Technologie de Troyes, ISTIT, France EU/MEeting October 23-24, 2008, Troyes

2 2 LRP presentation A memetic algorithm chromosome definition SPLIT procedure local search Computational experiments Concluding remarks Outline

3 3 Problem definition set of depots = setup cost of depot i = capacity of depot i set of customers = demand of customer j set of homogeneous vehicles = vehicle capacity = fixed cost of a vehicle set of nodes = traveling cost on arc

4 4 Problem definition Objectives select the depots to use assign each customer to a depot solve a VRP for each open depot Integration: two decision levels hub location (tactical level) vehicle routing (operational level)

5 5 Example: the data depotcustomer

6 6 Example: a LRP solution for depot node 26 trip 1 : 26, 25, 24, 14, 10, 11, 15, 16, 26 trip 2 : 26, 27, 28, 36, 35, 43, 50, 49, 42, 34, 35, 26 trip 3 : 26, 16, 4, 19, 29, 37, 36, 28, 27, 26

7 7 The memetic algorithm (MA) initial Graph G SP-Graph HMA Splitauxiliary graph H’ LS sequence trips sequence

8 8 MA key features Chromosome ordered set of customers fitness = total cost of the solution no information on open depot and assignments Population set of chromosomes crossover and mutation initialization: heuristics + random solutions Mutation local search based on trips Population management based on opening depot nodes population management SPLIT

9 9 Evaluation: SPLIT procedure SPLIT for the CARP (Lacomme et al., 2001) outperformed CARPET encompass extensions (prohibited turns, etc.) SPLIT for the VRP (Prins, 2004) best published method for the VRP at that time  proved to be efficient for routing problems

10 10 SPLIT method (1/4) nb available vehicles remaining capacity at each depot label costfather label Parameters permutation on the customers (local) auxiliary graph Initial label at node 0 p th label at node i

11 11 Dominance rules label (is dominated by) if  (4;8,10;1245;*,*) < (4;10,10;1245;*,*) SPLIT method (2/4) OR

12 12 Label propagation node i: label node j: label new values add the trip number of vehicles: depots capacity: label cost: SPLIT method (3/4)

13 13 At each node i set of non dominated labels ways to split the customers into trip blocks assigned to depots At node n sets of feasible solutions given SPLIT method (4/4)

14 14 Split example (1/4) Shortest paths and demands Depots 1: node 7, capacity 10, opening cost 20 2: node 8, capacity 15, opening cost 10 3: node 9, capacity 8, opening cost 50

15 15 Split example (2/4)

16 16 Split example (3/4)

17 17 Split example (4/4) dominance rule

18 18 Mutation: local search (1/2) Parameters trips computed by Split graph H of the shortest paths Modifications Swap (1/1 clients) within the trip Swap (1/1 clients), trips of the same depot Swap (1/1 clients), trips of different depots FA strategy, VND-like exploration, it. limit

19 19 Mutation: local search (2/2) Combination Split - LS mutation: sequence → sequence Split: sequence → trips LS: trips → trips compact: trips → sequence Purpose two different search spaces combination allow a wider exploration similar to Variable Search Space

20 20 Population management initial subset of open depots (heuristic) restart: new subset of open depots Neighborhood: depots used in the best solution + randomly chosen depot iterations value

21 21 Prodhon’s instances 4 instances with 20 customers 8 instances with 50 customers 12 instances with 100 customers 6 instances with 200 customers  from 5 to 10 depots Tuzun & Burke’s instances 12 instances with 100 customers 12 instances with 150 customers 12 instances with 200 customers  from 10 to 20 depots Barreto’s instances From 27 to 100 customers From 5 to 10 depots no depot capacity not a true LRP Numerical experiments

22 22 Numerical experiments Protocol best of 4 runs 150.000 iterations population of 40 chromosomes restart triggered after 1000 iterations each time +200 iterations maximum = 10.000 iterations

23 23 Prodhon’s instances (1/3) MAGRASPMAPMLRGTS instanceLBsol 20-5-154793 550215479355131 20-5-1b39104 20-5-248908 20-5-2b37542 50-5-184750,6901119063290160 50-5-1b59574,963242647616324263256 50-5-282057,188643887868829888715 50-5-2b63841,467340680426789367698 50-5-2bis82356,684055 84181 50-5-2bbis51085,351902520595182251992 50-5-382703,8862038738086203 50-5-3b59473,8618306189061830 gap/LB3,153,713,183,29 20-50 nodes

24 24 Prodhon’s instances (2/3) MAGRASPMAPMLRGTS instanceLBsol 100-5-1272082280370279437281944277935 100-5-1b207037216813216159216656214885 100-5-2186917196086199520195568196545 100-5-2b153827157989159550157325157792 100-5-3194202201836203999201749201952 100-5-3b149986154447154596153322154709 100-10-1258243327467323171316575291887 100-10-1b218826272267271477270251235532 100-10-2226905246615254087245123246708 100-10-2b194628206142206555205052204435 100-10-3222353256054270826253669258656 100-10-3b189308205554216173204815205883 gap/LB9,3210,758,596,69 100 nodes

25 25 Prodhon’s instances (3/3) MAGRASPMAPMLRGTS instanceBKSsol 200-10-1479425492602490820483497481676 200-10-1b378773404131416753380044380613 200-10-2450468477048512679451840453353 200-10-2b374435392157379980375019377351 200-10-3472898484911496694478132476684 200-10-3b364178368963389016364834365250 gap/BKS3,996,590,490,58 200 nodes

26 26 Tuzun & Burke’s instances (1/3) MAGRASPMAPMLRGTS instancesol P1111121492,111525,251493,921490,82 P1111221463,421526,901471,361471,76 P1112121429,811423,541418,831412,04 P1112221436,131482,291492,461443,06 P1121121180,911200,241173,221187,63 P1121221103,631123,641115,371115,95 P112212804,06814,00793,97813,28 P112222731,05787,84730,51742,96 P1131121288,241273,101262,321267,93 P1131221250,051272,941251,321256,12 P113212905,66912,19903,82913,06 P1132221026,251022,511022,931025,51 gap/BKS0,502,400,530,81 100 nodes

27 27 Tuzun & Burke’s instances (2/3) MAGRASPMAPMLRGTS instancesol P1311121985,632006,71959,391946,01 P1311221934,361888,91881,671875,79 P1312122038,332033,931984,252010,53 P1312221913,121856,071855,251819,89 P1321121462,531508,331448,271448,65 P1321221481,151456,821459,831492,86 P1322121219,521240,41207,411211,07 P132222947,40940,8934,79936,93 P1331121762,321736,91720,31729,31 P1331221420,971425,741429,341424,59 P1332121227,521223,71203,441216,32 P1332221163,601231,331158,541162,16 gap/BKS1,912,090,310,54 150 nodes

28 28 Tuzun & Burke’s instances (3/3) MAGRASPMAPMLRGTS instancesol P1211122367,562384,012293,992296,52 P1211222356,012288,092277,392207,5 P1212122350,472273,192274,572260,87 P1212222352,342345,12376,252259,52 P1221122195,392137,082106,262120,76 P1221221834,961807,291771,531737,81 P1222121480,791496,751467,541488,55 P1222221133,801095,9210881090,59 P1231122021,042044,661973,281984,06 P1231222057,222090,951979,051986,49 P1232121821,201788,71782,231786,79 P1232221477,221408,631396,241401,16 gap/BKS3,942,550,910,33 200 nodes

29 29 Barreto’s instances (1/1) MAGRASPMAPMLRGTS instanceLBsol Christofides69-50x5551,1586,3599,1565,6586,3 Christofides69-75x10791,4855,3861,6866,1863,5 Christofides69-100x10818,1867,1861,6850,1842,9 Daskin95-88x8347,0355,8356,9355,8368,7 Daskin95-150x1039470,5,045656,244625,244011,744386,3 Gaskell67-21x5424,9 429,6424,9 Gaskell67-22x5585,1 611,8587,4 Gaskell67-29x5512,1 515,1512,1 Gaskell67-32x5562,2 571,9 584,6 Gaskell67-32x5504,3 534,7504,8 Gaskell67-36x5460,4463,9460,4485,4476,5 Min92-27x53062,0 3065,2 Min92-27x55423,05927,45965,15950,15809,0 gap/LB3,754,024,424,03

30 30 Concluding remarks Found some new best solutions Time consuming → reduction strategies Could handle extensions: heterogeneous fleet of vehicles time-windows (customers and depots) stochastic demands for customers bin-packing constraints in vehicles load

31 31 Thanks !


Download ppt "Resolution of the Location Routing Problem C. Duhamel, P. Lacomme C. Prins, C. Prodhon Université de Clermont-Ferrand II, LIMOS, France Université de Technologie."

Similar presentations


Ads by Google