Download presentation
Presentation is loading. Please wait.
Published byMartha Parker Modified over 9 years ago
1
Marine biogenic emissions, sulfate formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University Department of Earth and Planetary Sciences 6 th summer institute July 21, 2004
2
Marine biogenic emissions, sulfate formation and climate 17 O sulfate: Aerosol oxidation pathways INDOEX: INDian Ocean Experiment GEOS-CHEM: Global 3D model Overview
3
Sulfate in the Atmosphere Surface DMSCS 2 H2SH2S SO 2 SO 4 2- OH O 3, H 2 O 2 OH, NO 3 MSA OH
4
Effects of Aerosols on Climate Direct Effect Indirect Effect Reflection Refraction Absorption Ramanathan et al., 2001 Aerosol number density (cm -3 ) Cloud droplet number density (cm -3 )
5
Marine Biologic DMS and Climate Charleson et al. (1987) SO 2 H 2 SO 4 OHNew particle formation CCN Light scattering DMS OHOH NO 3 Phytoplankton H2O2H2O2 SO 4 2- O3O3 Sea-salt aerosol
6
Alkalinity in the Marine Boundary Layer Na +, Cl -, CO 3 2- pH=8 CO 2 (g) Acids: H 2 SO 4 (g) HNO 3 (g) RCOOH(g) SO 2 (g) SO 4 2- OH ?
7
Stable Isotope Measurements: Tracers of source strengths and/or chemical processing of atmospheric constituents (‰) = [(R sample /R standard ) – 1] 1000 R = minor X/ major X 18 O: R = 18 O/ 16 O 17 O: R = 17 O/ 16 O Standard = SMOW (Standard Mean Ocean Water) (CO 2, CO, H 2 O, O 2, O 3, SO 4 2- ….) 17 O / 18 O 0.5 17 O = 17 O – 0.5* 18 O = 0
8
Mass-Independent Fractionation 17 O / 18 O 1 Thiemens and Heidenreich, 1983 17 O 17 O 17 O = 17 O – 0.5 * 18 O 0 O + O 2 O 3 * Mass-dependent fractionation line: 17 O/ 18 O 0.5
9
Source of 17 O Sulfate SO 2 in isotopic equilibrium with H 2 O : 17 O of SO 2 = 0 ‰ 1) SO 3 2- + O 3 ( 17 O=35‰) SO 4 2- 1 7 O = 8.75 ‰ 17 O of SO 4 2- a function relative amounts of OH, H 2 O 2, and O 3 oxidation Savarino et al., 2000 3) SO 2 + OH ( 17 O=0‰) SO 4 2- 17 O = 0 ‰ 2) HSO 3 - + H 2 O 2 ( 17 O=1.7‰) SO 4 2- 17 O = 0.85 ‰ Aqueous Gas
10
pH dependency of O 3 oxidation and its effect on 17 O of SO 4 2- H2O2H2O2 O3O3 H2O2H2O2 O3O3 Lee et al., 2001 Sea-spray
11
Pre-INDOEX Jan. 1997INDOEX March 1998 INDOEX cruises
12
Analytical Method High volume air sampler H 2 SO 4 Ion ChromatographIonic separation O 2 loop 5A mol.sieve vent Isotope Ratio Mass Spectrometer Ag 2 SO 4 O 2 + SO 2 Removable quartz tube 1050°C magnet To vacuum GC SO 2 trap He flow Sample loop 5A mol.sieve vent SO 2 port O 2 port
13
DMS SO 2 Free troposphere H 2 SO 4 (g) OH Cloud other aerosols (acid or neutral) O3O3 CO 2 (g) H2O2H2O2 Emission Marine Boundary Layer Subsidence OH NO 3 Sea-salt aerosol CO 3 2- Emission HNO 3 (g) RCOOH(g) Subsidence Deposition NH 3 (g) GEOS-CHEM Sea-salt Alkalinity http://www-as.harvard.edu/chemistry/trop/geos/index.html SO 4 2- OH
14
Pre-INDOEX Cruise January 1997 ITCZ
15
INDOEX Cruise March 1998 ITCZ
16
GEOS-CHEM Alkalinity Budget 60°N 60°S 180°W180°E ƒ SO 2 ƒ excess
17
Effect of sea-salt chemistry on SO 2 and sulfate concentrations |100| Case1 Case2Case1 Percent (%) change (yearly average): SO 2 SO 4 2- 180°W 180°E 60°N 60°S 60°N 60°S
18
50% 0%100% Effect of sea-salt chemistry on gas-phase sulfate production rates Mar/Apr/MayJun/Jul/Aug Sep/Oct/NovDec/Jan/Feb
19
Conclusions Sulfate formation in sea-salt aerosols is limited by: Low to mid-latitudes: sea-salt flux to the atmosphere (wind) Mid to high-latitudes: gas-to-particle transfer rate of SO 2 SO 2 plays dominant role in titrating sea-salt alkalinity 17 O constraint indicates no significant regeneration of alkalinity through NaCl + OH reaction Large decreases in SO 2 concentrations (70%) and the rate of gas-phase sulfate production (60%) in the MBL Inclusion of sea-salt chemistry in global models is important for interpretation of Antarctic ice core 17 O sulfate measurements
20
Acknowledgements Mark H. Thiemens Charles Lee V. Ramanathan Joël Savarino Daniel Jacob Rokjin Park Qinbin Li Bob Yantosca
21
Mwskhidze et al., 2003 Source: www.nasa.gov SO 2 Oxidation, Iron Mobilization, and Oceanic Productivity
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.