Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lokanandha Reddy Irala 1 Capital Asset Pricing Model Capital Asset Pricing Model.

Similar presentations


Presentation on theme: "Lokanandha Reddy Irala 1 Capital Asset Pricing Model Capital Asset Pricing Model."— Presentation transcript:

1 Lokanandha Reddy Irala 1 Capital Asset Pricing Model Capital Asset Pricing Model

2 Lokanandha Reddy Irala 2 Capital Asset Pricing Model MPT Revisited  The Markowitz portfolio theory explains how investors-acting upon a set of estimates- select an optimum portfolio, or set of portfolios.  If investors act as prescribed by the MPT, then it is interesting to see how the aggregate of investors will behave, and how prices and returns are determined in the market.  Such models –known as general equilibrium models- will allow us to determine the relevant measure of risk for any asset and the relationship between expected return and risk for any asset when markets are in equilibrium.

3 Lokanandha Reddy Irala 3 Capital Asset Pricing Model CAPM- The Assumptions  No transaction costs & personal Income taxes  Assets are infinitely divisible  Perfect competition An individual cannot affect the price of a stock by his buying or selling action. While no single investor can affect prices by an individual action, investors in total determine prices by their actions.  Return and Risk are the only decision criteria  Unlimited short sales  Unlimited lending and borrowing at the risk less rate.

4 Lokanandha Reddy Irala 4 Capital Asset Pricing Model CAPM- The Assumptions  Homogeneity of expectations. Investors are assumed to be concerned with the mean and variance of returns (or prices over a single period) All investors are assumed to define the relevant period in exactly the same manner All investors are assumed to have identical expec­ tations with respect to the necessary inputs (expected returns, the variance of returns and correlation structure between all pairs of stocks.) to the portfolio decision.  Marketability of assets All assets are marketable. All assets, including human capital, can be sold and bought on the market.

5 Lokanandha Reddy Irala 5 Capital Asset Pricing Model The SML  For very well-diversified portfolios, non systematic risk tends to go to zero and the only relevant risk is systematic risk measured by Beta.  Since we assume that the investor is concerned only with expected return and risk, the only di­mensions of a security that need be of concern are expected return and Beta.

6 Lokanandha Reddy Irala 6 Capital Asset Pricing Model  Let us hypothesize two portfolios with the characteristics shown here: Investment Expected return Beta X141.2 Y181.4

7 Lokanandha Reddy Irala 7 Capital Asset Pricing Model  Now consider a portfolio Z made up of one half of portfolio X and one half of portfolio Y.  Then, the return on Z is given by  Then, the Beta of Z is given by

8 Lokanandha Reddy Irala 8 Capital Asset Pricing Model  In Let us plot these three potential investments in the beta-return space  Notice that they lie on a straight line.  This is no accident. All portfolios composed of different fractions of investments X and Y will lie along a straight line in Expected Return -Beta space. 18 16 14 1.21.31.4 RpRp Z Y X RpRp

9 Lokanandha Reddy Irala 9 Capital Asset Pricing Model A 18 16 14 1.21.31.4 RpRp Z Y X RpRp  Such an investment cannot exist for very long.  This portfolio offers a higher return and the same risk as portfolio Z.  Hence, it would pay all investors to sell Z short and buy A.  Now hypothesize a new investment A that has a return of 17% and a Beta of 1.3

10 Lokanandha Reddy Irala 10 Capital Asset Pricing Model  An investor could sell Rs.1000 worth of portfolio Z short and with the Rs.1000 buy portfolio A. The characteristics of this arbitrated portfolio would be as follows: Investment (Rs.) Expected Return (Rs.) Beta Portfolio Z-1000 -160 -1.3 Portfolio A+1000 170 1.3 Arbitrage Portfolio 0 10 0

11 Lokanandha Reddy Irala 11 Capital Asset Pricing Model Deriving the Security Market Line  (1, R m ) (0, R f ) 1.0 RpRp M

12 Lokanandha Reddy Irala 12 Capital Asset Pricing Model Thank You Questions?


Download ppt "Lokanandha Reddy Irala 1 Capital Asset Pricing Model Capital Asset Pricing Model."

Similar presentations


Ads by Google