Download presentation
Presentation is loading. Please wait.
Published byMargaret Gardner Modified over 8 years ago
2
Rossana Bonomi Rossana.Bonomi@cern.ch R. Bonomi TE-MSC-CMI SPL Seminar 2012
3
Outline SPL Short cryomodule heat loads and refrigeration powers Thermal analyses of components Double-walled tube Cold-warm transition Vacuum vessel and thermal shield Mock-up 1 R. Bonomi TE-MSC-CMI SPL Seminar 2012
4
Short Cryomodule 2 R. Bonomi TE-MSC-CMI SPL Seminar 2012 4 cavities, 4+1 DWT, 2 CWT
5
Heat contributions from: Double-walled tubeto 2 K, 4.5 K Cold-warm transitionto 2 K, 50-70 K Vacuum vesselto 50-70 K Thermal shieldto 2 K Cryomodule temperature levels Temperature levels: Bath2 K Inlet helium gas4.5 K Thermal shield50-70 K Vacuum vessel300 K TS VV CM CWT DWT 3 R. Bonomi TE-MSC-CMI SPL Seminar 2012 Very important for thermodynamic costs
6
Cryomodule heat loads SubassemblyTypeSource Desti- nation @ 2 K [W] @ 4.5 K [W] @ 50-70 K [W] Double-walled tube DWT cd rad RF DWTbath 13 (1) x 5 = 65 0.1 (2) x 5 = 0.5 0.5 (3) x 4 + 0.1 x 1 = 2.1 24 (4) x 4 + 13 x 1 = 109 ----- cvDWTgas----- (1) 60 (2) x 5 = 300 60 (3) x 5 = 300 - (4) - Cold-warm transition * CWT cdWFTS----- 23.0 x 2 = 46.0 cdTSCM 0.8 x 2 = 1.6 0.8 x 2 = 1.6 0.8 x 2 = 1.6 0.8 x 2 = 1.6 ----- radWF + wallCM 1.0 x 2 = 2.0 1.0 x 2 = 2.0 1.0 x 2 = 2.0 1.0 x 2 = 2.0 ----- radWFTS-------- 0.2 x 2 = 0.4 Vacuum vessel VV rad **VVTS--------33.0 Thermal shield TS rad **TSCM1.1 ----- Cavity ***RFcavityCM- (1) - (2) 20.0 (3) x 4 = 80.0 20.0 (4) x 4 = 80.0 ----- TOT for SCM [W]69.7 (1) 5.2 (2) 86.8 (3) 193.7 (4) -300 (2) 300 (3) -79.4 DWT Static heat loads (1) RF off, cool off (2) RF off, cool on DWT Dynamic heat loads (3) RF on, cool on (4) RF on, cool off * Thermal shield at 50 K, placed at 0.15 m from cold flange ** C. Maglioni, V. Parma’s technical note: “Assessment of static heat loads in the LHC arc, from the commissioning of sector 7-8”, LHC Project Note 409, 2008 (VV TS 1.7 W/m 2 - TS CM 0.1 W/m 2 ) *** V. Parma’s presentation: http://cdsweb.cern.ch/record/1302738/files/thp004.pdfhttp://cdsweb.cern.ch/record/1302738/files/thp004.pdf 4
7
@ 2 K (990 W el /W th *): @ 50-70 K (16 W el /W th *): @ 4.5 K, non-isothermal: 40 mg/s warm gas are equivalent to 4 W th @ 4.5 K (100 W th /(g/s)) 4 W th @ 4.5 K cost 880 W el (220 W el /W th *) For 4+1 DWT 4.4 kW el (1)70 W th 69.3 kW el (2)5 W th 5.0 kW el (3)87 W th 86.1 kW el (4)194 W th 192.0 kW el Cryomodule refrigerator powers Static operations Dynamic operations 79 W th 1.3 kW el * S. Claudet et al. “1.8 K Refrigeration Units for the LHC: Performance Assessment of Pre-series Units”, proceedings ICEC20 5 When DWT is actively cooled, power is less than half ! R. Bonomi TE-MSC-CMI SPL Seminar 2012
8
Around 92 kW el of refrigerator power are expected during nominal operation for the SPL short cryomodule (4 cavities) Heat loads due to instrumentation, HOMs and critical regions have not been considered yet Cryomodule tot refrigerator power 6 R. Bonomi TE-MSC-CMI SPL Seminar 2012
9
Double-walled tube Semi-analytical model * 1D, 3 layers, 22 nodes Material properties: Cryocomp Gas properties: Hepak L= 300 mm, flange-flange length D= 50 mm, internal diameter S= 1152 mm 2, conductive section m= 40 mg/s, helium mass flow (laminar) * Based on O. Capatina ‘s presentation: http://indico.cern.ch/getFile.py/access?contribId=3&resId=1&materialId=slides&confId=86123 7 R. Bonomi TE-MSC-CMI SPL Seminar 2012 Inner wall: average thermal conductivity Cu-SS
10
Double-walled tube 8 R. Bonomi TE-MSC-CMI SPL Seminar 2012 Copper layer accounts for 5-7% of tot heat conducted
11
Double-walled tube Results are comparable with FE 2D simulations (Comsol) Heat load at bath: < 0.5 W RF power: 10.1 W Antenna radiative load (330 K): 0.6 W Thermal contraction: < 1 mm 9 RF power, No COOL 40 mg/s He Heat to He bath reduced to less than 2% R. Bonomi TE-MSC-CMI SPL Seminar 2012
12
Double-walled tube RF currents node position is critical.. Shift [mm]Prf [W]Qrad (W)Qbath [W] 010.1890.5790.110 5015.5030.5810.375 10014.0770.5870.576 1508.2130.5860.346 2008.8020.5800.113 25014.5120.5800.278 30015.2520.5860.571 RF currents 10 R. Bonomi TE-MSC-CMI SPL Seminar 2012
13
(Figure from: « An Introduction to Cryogenics », Ph.Lebrun, CERN/AT 2007-1) He refrigerationHe Liquefaction Thermodynamic efficiency of DWT gas cooling How to compare isothermal and non- isothermal processes ? Electrical power for liquefaction of 1 g/s helium: 6200 W el Carnot COP @ 4.5 K: 66 W el /W th 1 g/s liquid helium is equivalent to 100 W th @ 4.5 K * 11 * U. Wagner s note: http://cdsweb.cern.ch/record/808372/files/p295.pdf R. Bonomi TE-MSC-CMI SPL Seminar 2012
14
Thermodynamic efficiency of DWT gas cooling Comparison with other ways of cooling (heat intercepts, self-sustained cooling) 990 @ 2 K, 220 @ 4.5-9 K, 16 @ 80 K CaseQ @ 2K [W] P [W el ] Q @ 9K [W] P [W el ] Q @ 80K [W] P [W el ] vapours rate [g/s] Q equiv. @ 4.5K [W] (1g/s=100W) P [W el ] Total power [Wel] A) No intercept 12.612,375 -- -- - B) 1 optimised intercept @ 80K 2.22,178 -- 44.6714 -- - 2,892 C) 2 optimised intercepts @ 80K & 9K 0.181783.270430.6490 -- - 1,372 D) 4.5K self-sustained vapour cooling 0.0330- - - -0.0202440470 E) He vapour cooling (4.5K-300K) 0.1099- -- -0.0404880979 F) He vapour cooling (4.5K-300K), RF power on 0.50495- - - -0.04048801,375 G) No He vapour cooling, RF power on 2221,780 -- - -000 12 R. Bonomi TE-MSC-CMI SPL Seminar 2012
15
Cold-warm transition Mathcad/Matlab analytical analysis for each position and temperature of thermal shield Heat due to radiation and to conduction are evaluated through equivalent electric analysis TS 13 R. Bonomi TE-MSC-CMI SPL Seminar 2012
16
Cold-warm transition Heat to TS [W] Heat to BATH [W] Cold flange Warm flange REAL refr power [kW el ] Cold flange Warm flange 14 R. Bonomi TE-MSC-CMI SPL Seminar 2012 TS optimal position for minimisation of required refrigerator power Each CWT could evaporate helium for 2 DWTs (2 W=>95 mg/s)
17
Vacuum vessel and thermal shield Radiation values rescaled from LHC commissioning of sector 7-8 LHC linear heat loads (average values): 4.3 W/m vacuum vessel to thermal shield 0.2 W/m thermal shield to cold mass For SPL SCM: 33.0 W @ TS from vacuum vessel 1.1 W @ 2 K from thermal shield * C. Maglioni, LHC Project Note 409 http://cdsweb.cern.ch/record/1087253/files/project-note-409.pdf 15 R. Bonomi TE-MSC-CMI SPL Seminar 2012
18
Mock-up test 16 R. Bonomi TE-MSC-CMI SPL Seminar 2012
19
Mock-up test 1.5 cavities, 2 DWTs, 1 intercavity support Cooled by LN2 Test of all possible cooling conditions No RF power 17 Validation of: Cavity supporting system Assembly realignment of cavities via vessel interface Alignment measuring device (OWPM) Thermal contractions DWT active cooling R. Bonomi TE-MSC-CMI SPL Seminar 2012
20
Mock-up test Estimated static heat load: Conduction from DWTs+feedthroughs: ~ 2 W (300 mg/s GN2) Radiation from vacuum vessel: ~ 10 W (rescaled from LHC) Example: evaporation of 1/4 of total LN2 volume (10 l out of 40 l) takes ~ 1.5 days 18 R. Bonomi TE-MSC-CMI SPL Seminar 2012
21
Thanks for your attention! SPL workspace:https://espace.cern.ch/spl-cryomodule/default.aspxhttps://espace.cern.ch/spl-cryomodule/default.aspx SPL docs on EDMS:https://edms.cern.ch/nav/P:SLHC-000008:V0/P:SLHC-000076:V0/TAB3https://edms.cern.ch/nav/P:SLHC-000008:V0/P:SLHC-000076:V0/TAB3 R. Bonomi TE-MSC-CMI SPL Seminar 2012
23
Operating conditionValue Beam current/pulse lenght40 mA/0.4 ms beam pulse 20 mA/0.8 ms beam pulse cryo duty cycle4.11%8.22% quality factor10 x 10 9 5 x 10 9 accelerating field25 MV/m Source of Heat LoadHeat Load @ 2K Beam current/pulse lenght40 mA/0.4 ms beam pulse20 mA/0.8 ms beam pulse dynamic heat load per cavity5.1 W20.4 W static losses<1 W (tbc) power coupler loss at 2 K<0.2 W HOM loss in cavity at 2 K<1<3 W HOM coupler loss at 2 K (per coupl.) <0.2 W beam loss1 W Total @ 2 K8.5 W25.8 W SPL operational conditions
24
Ideal vs. real refrigerator power Temperature level [K] IDEAL - Carnot [Wel/Wth] REAL [Wel/Wth] Efficiency wrt Carnot [%] 214999015 4.5-966-32220<30 50-705-316<30 R. Bonomi TE-MSC-CMI SPL Seminar 2012
25
(B) 1 Heat intercept Q @ 2K 300K x1x1 L Q @ 80K R. Bonomi TE-MSC-CMI SPL Seminar 2012
26
(C) 2 Heat intercepts Q @ 2K 300K Q @ 8K Q @ 80K L x1x1 x2x2 R. Bonomi TE-MSC-CMI SPL Seminar 2012
27
(D) He vapour cooling 300K 4.5K Q in g/s L attenuation factor R. Bonomi TE-MSC-CMI SPL Seminar 2012
28
SCM instrumentation
29
Burning coolant R. Bonomi TE-MSC-CMI SPL Seminar 2012
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.