Download presentation
Presentation is loading. Please wait.
Published byGordon Cummings Modified over 8 years ago
1
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1
2
Shanxi University Atomic Physics An apparatus suitable for observation of the Zeeman effect.
3
Shanxi University Atomic Physics
4
Fig. 6.11
5
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_4
6
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_5
7
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_6
8
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_7 Doppler broadening is much less of a problem in direct measurements of the separation between hyperfine levels with microwave techniques (at frequencies of gigahertz), or the even smaller splitting of the Zeeman sub-levels that correspond to radio-frequency transitions. An example of a radio-frequency and microwave spectroscopy technique is outlined in the next section.
9
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_1
10
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_2
11
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_3
12
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_4
13
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_5 Fig. 6.14 (a)
14
Shanxi University Atomic Physics Fig. 6.14 (b) (c) (d)
15
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_7
16
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_8 Fig. 6.15
17
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_9
18
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_10
19
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_11
20
Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_12
21
Shanxi University Atomic Physics 6.4.2 Atomic clock_1
22
Shanxi University Atomic Physics 6.4.2 Atomic clock_2
23
Shanxi University Atomic Physics 6.4.2 Atomic clock_3
24
Shanxi University Atomic Physics 6.4.2 Atomic clock_4
25
Shanxi University Atomic Physics Complementarity: The measurement of the Cs fine structure Saturation absorption spectrum Selective Reflection spectrum Ultra-thin film spectrum Ultra-cold atom
26
Shanxi University Atomic Physics Selective Reflection spectrum Experimental setup
27
Shanxi University Atomic Physics Experimental result
28
Shanxi University Atomic Physics (a) 0mW (b) 8.3mW (c) 38mW (d)160mW (e)500mW I C =22mW (a') -151MHz (b') 0MHz (c') 128MHz (d') 300MHz
29
Shanxi University Atomic Physics Saturation absorption spectrum C34 T5 T4 T3 C35 C45 The saturated absorption spectroscopy of Cs atom from 6S 1/2 (F=4) to 6P 3/2.
30
Shanxi University Atomic Physics Ultra-thin film spectrum
31
Shanxi University Atomic Physics 薄池透射谱 (b) 和 (b’),(a) 和 (a’) 为对应的饱和吸收谱. Experimental results(1)
32
Shanxi University Atomic Physics 薄池透射谱 (a) 与对应鉴频 曲线 (b). 锁频前后误差线比较 Experimental results(2)
33
Shanxi University Atomic Physics Ultra-cold atom experimental setup Z λ/2 Lens λ/2 λ/4 Main laser beam Repumping laser beam The experimental setup. Ion pump Cs
34
Shanxi University Atomic Physics The Doppler free spectrum in cold Cs atom of the transition 6S 1/2 (F=4) to 6P 3/2 (F´=3, 4 , 5). Spectrum of ultra-cold atom Nonlinear spectrum
35
Shanxi University Atomic Physics Exercises 6.1 — 6.8, 6.11, 6.13
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.