Presentation is loading. Please wait.

Presentation is loading. Please wait.

Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1.

Similar presentations


Presentation on theme: "Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1."— Presentation transcript:

1 Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1

2 Shanxi University Atomic Physics An apparatus suitable for observation of the Zeeman effect.

3 Shanxi University Atomic Physics

4 Fig. 6.11

5 Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_4

6 Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_5

7 Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_6

8 Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_7 Doppler broadening is much less of a problem in direct measurements of the separation between hyperfine levels with microwave techniques (at frequencies of gigahertz), or the even smaller splitting of the Zeeman sub-levels that correspond to radio-frequency transitions. An example of a radio-frequency and microwave spectroscopy technique is outlined in the next section.

9 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_1

10 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_2

11 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_3

12 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_4

13 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_5 Fig. 6.14 (a)

14 Shanxi University Atomic Physics Fig. 6.14 (b) (c) (d)

15 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_7

16 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_8 Fig. 6.15

17 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_9

18 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_10

19 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_11

20 Shanxi University Atomic Physics 6.4.1 The atomic-beam technique_12

21 Shanxi University Atomic Physics 6.4.2 Atomic clock_1

22 Shanxi University Atomic Physics 6.4.2 Atomic clock_2

23 Shanxi University Atomic Physics 6.4.2 Atomic clock_3

24 Shanxi University Atomic Physics 6.4.2 Atomic clock_4

25 Shanxi University Atomic Physics Complementarity: The measurement of the Cs fine structure Saturation absorption spectrum Selective Reflection spectrum Ultra-thin film spectrum Ultra-cold atom

26 Shanxi University Atomic Physics Selective Reflection spectrum Experimental setup

27 Shanxi University Atomic Physics Experimental result

28 Shanxi University Atomic Physics (a) 0mW (b) 8.3mW (c) 38mW (d)160mW (e)500mW I C =22mW (a') -151MHz (b') 0MHz (c') 128MHz (d') 300MHz

29 Shanxi University Atomic Physics Saturation absorption spectrum C34 T5 T4 T3 C35 C45 The saturated absorption spectroscopy of Cs atom from 6S 1/2 (F=4) to 6P 3/2.

30 Shanxi University Atomic Physics Ultra-thin film spectrum

31 Shanxi University Atomic Physics 薄池透射谱 (b) 和 (b’),(a) 和 (a’) 为对应的饱和吸收谱. Experimental results(1)

32 Shanxi University Atomic Physics 薄池透射谱 (a) 与对应鉴频 曲线 (b). 锁频前后误差线比较 Experimental results(2)

33 Shanxi University Atomic Physics Ultra-cold atom experimental setup Z λ/2 Lens λ/2 λ/4 Main laser beam Repumping laser beam The experimental setup. Ion pump Cs

34 Shanxi University Atomic Physics The Doppler free spectrum in cold Cs atom of the transition 6S 1/2 (F=4) to 6P 3/2 (F´=3, 4 , 5). Spectrum of ultra-cold atom Nonlinear spectrum

35 Shanxi University Atomic Physics Exercises 6.1 — 6.8, 6.11, 6.13


Download ppt "Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1."

Similar presentations


Ads by Google