Presentation is loading. Please wait.

Presentation is loading. Please wait.

SHM Hr Physics Chapter 11 Notes. Simple Harmonic Motion Objectives Identify the conditions of simple harmonic motion. Explain how force, velocity, and.

Similar presentations


Presentation on theme: "SHM Hr Physics Chapter 11 Notes. Simple Harmonic Motion Objectives Identify the conditions of simple harmonic motion. Explain how force, velocity, and."— Presentation transcript:

1 SHM Hr Physics Chapter 11 Notes

2 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic motion. Explain how force, velocity, and acceleration change as an object vibrates with simple harmonic motion. Calculate the spring force using Hooke’s law.

3 Simple Harmonic Motion Simple Harmonic Motion gives a regular repeating action.  Any periodic motion that is the result of a restoring force that is proportional to displacement. Springs, Masses, Pendula, and Bells, exhibit a periodic motion, therefore, SHM.

4 Hooke's Law Hooke's Law says that the restoring force due to a spring is proportional to the length that the spring is stretched, and acts in the opposite direction. If we imagine that there are no other forces, and let x represent the distance the spring is stretched at time t then the restoring force might be represented as -kx where k is the spring constant and k > 0.

5

6

7

8 Hooke’s Law Concept Check If a mass of 0.55 kg attached to a vertical spring stretches the spring 36 cm from its original equilibrium position, what is the spring constant?

9 Hooke’s Law Concept Check 15 N/m

10 Hooke’s Law Concept Check A load of 45 N attached to a spring is hanging vertically stretches the spring 0.14 m. What is the spring constant?

11 Hooke’s Law Concept Check 3.2 x 10 2 N/m

12 Hooke’s Law Concept Check A slingshot consists of a light leather cup attached between two rubber bands. If it takes a force of 32 N to stretch the bands 1.2 cm, what is the equivalent spring constant of the two rubber bands?

13 Hooke’s Law Concept Check 2.7 x 10 3 N/m

14 Hooke’s Law Concept Check How much force is required to pull a spring 3.0 cm from its equilibrium position if the spring constant is 2.7 x 10 3 N/m?

15 Hooke’s Law Concept Check 81 N

16 The Simple Pendulum The restoring force is a component of the bob’s weight, so F= F g sin θ For small angles (less than 15ْ ), the motion of a pendulum approximates simple harmonic motion.

17 Measuring Simple Harmonic MotionObjectives Identify the amplitude of vibration Recognize the relationship between period and frequency Calculate the period and frequency of an object vibrating with simple harmonic motion

18

19

20 Galileo’s Laws of the Pendulum Concept Check You need to know the height of a tower, but darkness obscures the ceiling. You note that a pendulum extending from the ceiling almost touches the floor and has a period of 24 s. How tall is the tower?

21 Concept Check 1.4 x 10 2 m

22 Concept Check You are designing a pendulum clock to have a period of 1.0 s. How long should the pendulum be?

23 Concept Check 25 cm

24 Concept Check A trapeze artist swings in simple harmonic motion with a period of 3.8 s. Calculate the length of the cable supporting the trapeze.

25 Concept Check 3.6 m

26 Concept Check Calculate the period and frequency of a 3.500 m long pendulum at the following locations:  The North Pole, where g=9.832 m/s 2  Chicago, where g = 9.802 m/s 2  Jakarta, Indonesia, where g=9.782 m/s 2

27 Concept Check 3.749 s; 0.2667 Hz 3.754 s; 0.2664 Hz 3.758 s; 0.2661 Hz

28 Simple Harmonic Motion of a Mass-Spring System The period of a mass-spring system depends on the mass and the spring constant. T= 2  (m/k)

29

30

31

32

33

34

35

36

37

38

39

40

41


Download ppt "SHM Hr Physics Chapter 11 Notes. Simple Harmonic Motion Objectives Identify the conditions of simple harmonic motion. Explain how force, velocity, and."

Similar presentations


Ads by Google