Presentation is loading. Please wait.

Presentation is loading. Please wait.

Doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission.

Similar presentations


Presentation on theme: "Doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission."— Presentation transcript:

1 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Link Networks for IEEE 802.15.4 Date Submitted: 18 Sep, 2014 Source: Seong-Soon Joo, In-Whan Lee, Hyo-Chan Bang Company: ETRI Address: 161 Gajeong-dong, Yuseong-gu, Daejeon, KOREA Voice: +82-42-860-6333, FAX: +82-42-860-4197, E-Mail: ssjoo@etri.re.kr Re: Call for Final Proposals Abstract: As a final contribution proposal for the IEEE 802.15 TG10 standards, the layer 2 routing specification is proposed. Purpose:Final proposal to the IEEE802.15 TG10 call for contribution Notice:This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

2 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 2 Link Networks for IEEE 802.15.4 Seong-Soon Joo*, In-Whan Lee, Hyo-Chan Bang ETRI

3 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Contents Link Networks for IEEE 802.15.4 Tiered Cluster Tree Routing Primitives and Information Elements Performance Evaluation Slide 3

4 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Link Network transparent link to network layer –routed link-path from a source to a destination device –constituted of links and virtual links virtual links: established between two devices multi-hop apart multi-hop link connection through the routers which perform frame relaying instead of routed forwarding –performed in two stages: link connection and link network routing Slide 4 PAN coordinator L2R router 2 device 6 router 5 router 4 router 1 device 4 device 1 device 2 device 8 router 6 device 7 L2R router 3 device 5 device 3

5 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Link Network Reference Architecture layered architecture –application/IP network –L2R network –MAC/PHY Two sublayers for L2R network –MAC Link Control sublayer reserve a resource for a link and virtual link establish & maintain link and virtual link –MAC Link Network sublayer maintain link-path routing information manage link network sublayer peer protocol –encapsulated in information element L2R IE : header IE L2R payload IE : payload IE Slide 5 IEEE 802.15.4 MAC MAC Link Network (MLN) Network Application MAC Link Control (MLC) MLC-SAP MLN-SAP MCPS-SAP MLME-SAP IEEE 802.15.4 PHY L2RN

6 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 L2R Link Network Features start a PAN –PAN coordinator scans, selects a PAN ID –start to transmit beacon –when receiving association request, assign a short address setup a default link –device scans, selects coordinator based on distance to PAN coord, radio metric (RSSI) –connect on a default link, CAP, or access a media with CSMA-CA join a PAN –send association request as a cluster root or not –get response from PAN coordinator with cluster matrix –initialize route table maintain layer 2 routing –maintain cluster matrix as PAN coordinator, cluster root router, router –maintain route table setup virtual links –setup a shared link or a dedicated link on two ends multi-hops apart maintain link and link-path –maintain link table –maintain link-path table Slide 6

7 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 L2R Link and Virtual Link establishing a link or virtual link –default link scan parent/peer associate request command on CAP slot receive associate response command on CAP slot, then default link is established in non-beacon network, default link is established –shared/dedicated link or virtual receive link establish request from higher layer find link or virtual link, associate to the destination device with reserving the link resource receive associate response command from the destination device, then link or virtual link is established –maintain a link or virtual link primitives for link –MLC-LINK-SETUP.request/indication/response/confirm link type (shared/dedicated,uni/bi), destination address, number of slots –MLC-LINK-RELEASE.request/indication/response/confirm source address, destination address, link ID –MLC-MANAGEMENT.request/confirm management type (HELLO/RESET), link ID Slide 7

8 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Setup Virtual Link over DSME MAC as an example of dedicated virtual link a virtual link over DSME MAC –a series of links that connects two devices by switching the time slots Slide 8 tier 1 coord my beacon child 1 child 2 tier 2 router my beacon child 1 neighbor parent tier 3 router my beacon neighbor grand parent parent inner CAP link outer CAP link inner inward shared link inner outward shared link inner inward dedicated link outer inward shared link outer outward shared link inner inward dedicated link outer outward dedicated link

9 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Gateway router MLNE Gateway router MLCE Gateway router MAC sublayer Router 1 MLCE Router 1 MLNE Router 1 MAC sublayer Router 1 Higher layer MLC-LINK-SETUP.request (dedicated link) data (L2R IE) (link setup request command) MCPS-DATA.confirm MCPS-DATA.indication MLME-DSME-GTS.request DSME-GTS request command MLME-DSME- GTS.indication MLME-DSME- GTS.response DSME-GTS reply command MLME-DSME-GTS.confirm MCPS-DATA.request MLC-LINK-SETUP.indication (dedicated link) MCPS-DATA.request MLC-LINK-SETUP.confirm (dedicated link) MCPS-DATA.confirm data (L2R IE) (link setup response command) MCPS-DATA.indicaiton MLC-LINK-SETUP.response (dedicated link) MLME-DSME- GTS.request DSME-GTS request command MLME-DSME- GTS.indication MLME-DSME- GTS.response DSME-GTS reply command MLME-DSME-GTS.confirm MCPS-DATA.confirm MCPS-DATA.request data (L2R IE) (link setup request command) MCPS-DATA.indication data (L2R IE) (link setup response command) MCPS-DATA.confirm MCPS-DATA.indication MCPS-DATA.request additional sequence for bi-directional link setup

10 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Contents Link Networks for IEEE 802.15.4 Tiered Cluster Tree Routing Primitives and Information Elements Performance Evaluation Slide 10

11 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Tiered Clusters in Single PAN PAN coordinator centered tiered cluster –devices are randomly deployed around PAN coordinator –the distance to the PAN coordinator and distance to the neighbors increase when the device moving out from the PAN coordinator –group of device can be clustered according to the depth of tiers from PAN coordinator Slide 11 PD 1a PD 1b PD 0 tier 1 tier 2 tier 3 PD 1b2a PD 1c

12 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Tiered Cluster-Tree Topology addressing tiered cluster-tree –MAC short address = cluster identifier + device locator –cluster specified maximum depth of the cluster (L) maximum number of devices connected to a router (D) maximum number of routers among devices connected to a router (R) –device locator (ZigBee Cskip address) device identifier of a parent router + 1 + (sequential order of a router at cluster depth h - 1)*size of address block at cluster depth h –size of address block If R = 1, B(h) = 1+ D*(L- h-1) If R ≠ 1, B(h) = (1+D-R-D*R L-h-1 )/(1-R). Slide 12 Root Cluster Tree 0 (L0, R0, D0) Cluster Tree 1 (L1, R1, D1) Cluster Tree 3 (L3, R3, D3) Cluster Tree 2 (L2, R2, D2) Cluster Tree 4 (L4, R4, D4) Gateway router (cluster ID = 0, locator ID = 0) Cluster1 root (cluster ID = 0, locator ID = i) (cluster ID = 1, locator ID = 0) Cluster2 root (cluster ID = 0, locator ID = j) (cluster ID = 2, locator ID = 0) Cluster3 root (cluster ID = 0, locator ID = k) (cluster ID = 3, locator ID = 0) Cluster4 root

13 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Links of Tiered Cluster Tree tiered cluster –different size of cluster: (L,D,R) and B(h) = (1+D-R-D*R L-h-1 )/(1-R) –if runs out of address block or route cost is over threshold, one of leaf device can create a child cluster as a cluster root links –tree link based on the Cskip addressing –intra-cluster mesh link –inter-cluster mesh link Slide 13 Root Cluster Tree 0 (L0, R0, D0) Cluster Tree 1 (L1, R1, D1) Cluster Tree 3 (L3, R3, D3) Cluster Tree 2 (L2, R2, D2) Cluster Tree 4 (L4, R4, D4) Gateway router Cluster1 root Cluster2 root Cluster3 root Cluster4 root inter-cluster mesh link intra-cluster mesh link

14 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Tiered Cluster-Tree (TCT) Routing (I) TCT routes –composed of link, virtual link in view of link control sublayer –composed of tree link, intra-cluster mesh, inter-cluster mesh in view of link network sublayer –routing information link table cluster connectivity matrix, Cskip addressing inter-cluster mesh table Slide 14 Root Cluster Tree 0 Cluster Tree 1 Cluster Tree 3 Cluster Tree 2 Cluster Tree 4 Gateway router Cluster1 root Cluster2 root Cluster3 root Cluster4 root inter-cluster mesh link intra-cluster mesh link

15 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Tiered Cluster-Tree (TCT) Routing (II) Slide 15 TCT routing –with MAC address, find a cluster which a destination device is located at –check within same cluster select inward or outward link based on address –not in same cluster search possible paths to the destined cluster from cluster matrix, calculate route cost select cluster tree link or inter cluster mesh link –check the default route, which obtains from cluster connectivity matrix, and route cost –check available virtual links for this route –search inter-cluster mesh link to reduce the route cost –search intra-cluster mesh link to reduce the route cost from the route table –select a link to transmit a frame to next hop Root Cluster Tree 0 Cluster Tree 1 Cluster Tree 3 Cluster Tree 2 Cluster Tree 4 Gateway router Cluster1 root Cluster2 root Cluster3 root Cluster4 root inter-cluster mesh link intra-cluster mesh link

16 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Routing Information Base (I) PAN coordinator –PHY/MAC attribute extended address, capability, PHY MIB, MAC MIB –PAN information PAN ID, Beacon Interval, start time –PAN coordinator link table –PAN coordinator route table cluster matrix, address allocation map –Temp routing information base route update period, neighbor device table, neighbor link table cluster root router –PHY/MAC attribute –PAN information –cluster root router link table –Root cluster route table cluster matrix, cluster route table –Temp routing information base Slide 16 router –PHY/MAC attribute –PAN information –router link table –router route table cluster matrix, cluster route table –Temp routing information base device –PHY/MAC attribute –PAN information –device link table –device route table cluster route table

17 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Routing Information Base (II) neighbor device table –device address 16 bit address (cluster ID + router ID) 64 bit address –link list link –link ID –link type (CAP/CFP, default/shared/dedicated) –slot ID –link quality (RSSI, interference level) –queue load (frame count, loss count) Slide 17

18 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Routing Information Base (III) cluster matrix table –cluster root router address 16 bit address (cluster ID + router ID) 64 bit address reflector address –address assigned in the parent cluster or –address of opposite end neighbor router on mesh link –distance to PAN coordinator –cluster configuration depth/number of router/number of device –child cluster list router address –16 bit address –reflector address Slide 18

19 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Routing Information Base (IV) route table –destination device address 16 bit address (cluster ID + router ID) –route list route –link ID –route cost (distance, link quality, router load) Slide 19

20 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Routing Metrics routing metrics –link metrics link type : weights among default, shared, dedicated link link quality : signal strength, interference level load balance : number of frame on a link, number of loss frame on a link –route metrics distance : number of hops to destination link cost route cost calculation –link cost l(link type) + n(link quality) + m(load balance) : apply normalized function –virtual link cost sum of link cost on the virtual link (upward, downward) –route cost number of hops to destination sum of hop by hop link cost : link-path cost Slide 20

21 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Start L2R Link Network start router –if root router association, cluster formation, then start –if router association, then start address assignment –root router  PAN coordinator cluster formation –router  cluster root router assign from reserved address block primitives for starting L2R Link Network –MLN-START-NETWORK.request/confrim PAN ID, scan channel, BO, SO, max depth, max router, max device –MLN-START-ROUTER.request/confirm PAN ID, scan channel, max depth, max router, max device –MLN-START-DEVICE.request/confirm PAN ID, scan channel Slide 21

22 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 22 Gateway router MLNE Gateway router MLCE Gateway router MAC sublayer Router 1 MLCE Router 1 MLNE Router 1 MAC sublayer MLN-START-ROUTER.request MCPS-DATA.request association request command (L2R IE) MLME-RESET.request MLME-SCAN.request MLME-SCAN.confirm Router 1 Higher layer MLME-ASSOCIATION.request (Allocate Address) MLME-ASSOCIATION.indication MLME-ASSOCIATION.response association response command MLME-ASSOCIATION.confirm MLN-RESET MLC-DATA-CLINK.request (cluster formation request) data (L2R IE) (cluster formation request command) MCPS-DATA.indication MCPS-DATA.confirm assign cluster ID MLC-DATA-CLINK.request (cluster formation response) MCPS-DATA.request data (L2R IE) (cluster formation response command) MCPS-DATA.indication MCPS-DATA.confirm sequence of cluster formation MLC-DATA-CLINK.indication (cluster formation request) MLC-DATA-CLINK.indication (cluster formation response) MLC-DATA-CLINK.confirm establish default shared link LN-START-ROUTER.confirm MLME-START.request MLME-START.confirm load full cluster table

23 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Route Maintenance (I) maintain virtual link and router –maintain virtual link send hello periodically from source device to destination device check link status –maintain cluster root router PAN coordinator send hello periodically to cluster root router check status of cluster root router –loss beacon for some amount of time update routing information –update cluster matrix cluster matrix for whole network, when joining link network partial information above/behind a certain cluster root router –update route table of a cluster whole route table, when joining link network partial information above/behind a certain router route information to specific destination Slide 23

24 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Route Maintenance (II) periodical update –cluster table gateway  root router, root router  router –route table router  root router event driven update –start a PAN, join as a cluster root router, leave as a cluster root router update cluster matrix and broadcast the changed part to cluster root router –join or leave as a router update route table and broadcast the changed part to routers in the cluster –setup or release a mesh link detect by periodically searching or upon router’s update request if mesh link is inter cluster mesh link, change cluster matrix and broadcast if mesh link is intra cluster mesh link, change route table and broadcast –loose sync, notified orphan from PHY/MAC find an inward router and join again if needed, to become a cluster root router requests to assign a cluster ID to PAN coordinator Slide 24

25 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 TCT Route Maintenance (III) Slide 25 Root Cluster Tree 0 Cluster Tree 1 Cluster Tree 3 Cluster Tree 2 Cluster Tree 4 Gateway router Cluster1 root Cluster2 root Cluster3 root Cluster4 root inter-cluster mesh link intra-cluster mesh link

26 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 26

27 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Data Service of L2R Link Network frame forwarding –link type selection primitive CLK/SLK/DLK & frame operation type –in/out decision cluster connectivity matrix from cluster table –link selection (only for CLK/SLK data) shortest cluster-tree route vs. mesh route cluster table vs. route table Slide 27

28 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Contents Link Networks for IEEE 802.15.4 Tiered Cluster Tree Routing Primitives and Information Elements Performance Evaluation Slide 28

29 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Primitives (I) primitives for starting L2R Link Network –MLN-START-NETWORK.request/confrim PAN ID, scan channel, BO, SO, max depth, max router, max device –MLN-START-ROUTER.request/confirm PAN ID, scan channel, max depth, max router, max device –MLN-START-DEVICE.request/confirm PAN ID, scan channel –MLN-RESET.request/confirm Default MLIB –MLN-GET.request/confirm MLIB attribute –MLN-SET.request/confirm MLIB attribute, length, value –MLN-MANAGEMENT.request/confirm management type (REJOIN, LEAVE, UPDATE), PAN ID, device address, remove children indicator Slide 29

30 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Primitives (II) primitives for link –MLC-LINK-SETUP.request/indication/response/confirm link type (shared/dedicated,uni/bi), destination address, number of slots –MLC-LINK-RELEASE.request/indication/response/confirm source address, destination address, link ID –MLC-MANAGEMENT.request/confirm management type (HELLO/RESET), link ID primitives for data service –MLC-DATA-CLINK.request/indication/confirm destination address, length, sdu, sdu handle, security enable, ACK enable –MLC-DATA-SLINK.request/indication/confirm destination address, length, sdu, sdu handle, security enable, ACK enable –MLC-DATA-DLINK.request/indication/response/confirm link ID, destination address, length, sdu, sdu handle, security enable, ACK enable –MLN-DATA.request/indication/confirm tx mode, destination address, length, sdu, sdu handle, security enable Slide 30

31 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 L2R Frames L2R frames –define new MAC header IE and payload IE for L2R frames –use payload of MAC Data frame for L2R frames define MAC header Information Element : L2R IE –L2R source/destination address –L2R link setup/release/hello command conveying as a link management subframe define MAC payload Information Element : L2R Payload IE –L2R cluster formation/join/leave command –L2R route update command –L2R end-to-end flow control command Slide 31 L2R IEL2R Payload IEPayload L2R Subframe Control Link Network Addressing fields Link Management subframe Link Network Management subframe Frame Payload

32 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Link Management Command Frames Slide 32 L2R IEL2R Payload IEPayload L2R Subframe Control Link Network Addressing fields Link Management subframe Frame Payload Bits: 0-2Bits: 3-7Octets: 1Octets: Variable Link Management Command Type Sequence NumberLength of Link Management Command Link Management Command Payload Bits: 0-1Bits: 2-4567891011-15 Protocol Version Frame Operation Type Destination Address Flag Source Address Flag Destination Address Mode Source Address Mode Link Flag Link Network Flag Reserved Link Management Command Type value Command Type name 000SETUP_REQ 001REL_REQ 010HELLO_REQ 011Reserved 100SETUP_RESP 101REL_RESP 110HELLO_RESP

33 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Link Management Command Payload Link setup request/response command Link release request/response command Link hello request/response command Slide 33 Octets: 1Octets: 2 Octets: 1 Link TypeSource AddressDestination AddressNumber of Slot Octets: 1Octets: 2 Octets: 1 Link TypeSource AddressDestination AddressLink IDStatus Octets: 1Octets: 2 Octets: 1 Link TypeSource AddressDestination AddressLink ID Octets: 1Octets: 2 Octets: 1 Link TypeSource AddressDestination AddressLink IDStatus Octets: 1Octets: 2 Link IDSource AddressDestination Address Octets: 1Octets: 2 Octets: 1 Link IDSource AddressDestination AddressStatus

34 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Link Network Management Command Frames Slide 34 L2R IEL2R Payload IEPayload L2R Subframe Control Link Network Addressing fields Link Network Management subframe Frame Payload Bits: 0-2Bits: 3-7Octets: 1Octets: Variable Link Network Management Command Type Sequence NumberLength of Link Network Management Command Link Network Management Command Payload Bits: 0-1Bits: 2-4567891011-15 Protocol Version Frame Operation Type Destination Address Flag Source Address Flag Destination Address Mode Source Address Mode Link Flag Link Network Flag Reserved Link Network Management Command Type value Command Type name 000CLUSTER_REQ 001UPDATE_REQ 010LEAVE_REQ 011FLOW_REQ 100CLUSTER_RESP 101UPDATE_RESP 110LEAVE_RESP 111FLOW_RESP

35 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Link Network Management Command Payload Cluster formation request/response command Route update request/response command Flow control request/response command Slide 35 Octets: 1 Max DepthMax ChildrenMax Router Octets: 1Octets: 2 Length of Cluster Identifier SpaceCluster Identifier Octets: 1Octets: 2 Route Update Request TypeRouter Address Octets: 1Octets: 2Octets: 0/10/Variable Route Update Response Type Router AddressNumber of Entry of Routing Information Base Routing Information Base Octets: 1 Flow Control Command TypeSender Send Sequence NumberSender Receive Sequence Number Octets: 1 Flow Control Command TypeReceiver Send Sequence NumberReceiver Receive Sequence Number

36 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Contents Link Networks for IEEE 802.15.4 Tiered Cluster Tree Routing Primitives and Information Elements Performance Evaluation Slide 36

37 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Simulation Set (I) L2R network for simulation –topology visibility of 3 grid points, neighbor consist of 28 nodes 11 X 11 (121 nodes), 33 X 33 (1,089), 100 X 100 multicast : 1 to 5 (11x11), 1 to 10 (33x33), 1 to 20 (100x100) m to 1 : 5 to 1(11x11), 10 to 1 (33x33), 20 to 1 (100x100) –PAN coordinator – device PHY data rate : 100Kbps (option: 250Kbps) application packet rate : 1pkt/30min (up), 1pkt/300min to M-1 device (down) packet size : 100 bytes –Peer to Peer PHY data rate : 250Kbps (option: 20Kbps, 2Mbps option) application packet rate : 1pkt/min (option: 1pkt/sec, 1pkt/30min) packet size : 255 bytes (option: 31bytes, 2,047bytes) –energy consumption TX : 28mA RX : 11.2mA idle : 1.5uA battery capacity : 2,000mAh –link transmission error rates one-hop neighbor (10-6), one-hop across (10-5) two-hop neighbor (10-4), two-hop half across (10-3), two-hop across (10-2) three-hop neighbor (10-1) Slide 37

38 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Simulation Set (II) evaluation cases –PAN coordinator – device : multicast –device – device : unicast –device – device : multicast –multiple devices – device : m to 1 –route update 1min for 11x11 10min for 33x33 Slide 38 evaluation parameter –amount of memory per node used for routing –calculation cost –control traffic when initializing network when updating network when sending data packets –recovery time of link failure –complexity scales with the size of the network –end to end packet loss ratio –end to end delay –life time of battery

39 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Emulator (I) set simulation scenario –configure PHY (rate) –configure MAC (async/beacon/CSMA/TDMA/superframe) –configure APPL (packet rate, size) –configure scenario (PAN-device: 1-m, device-device: 1- 1/1-m/m-1), number of device/coord set device deployment –assign extended address (sequential number), location (x,y), neighbor list –assign role of device (PAN coord, cluster root capable, router capable, device) –assign enter/exit device, configure scenario –set simulation active time/deactive time to each device Slide 39

40 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Emulator (II) PAC coordinator –start network scan –associate device assign address set link –assign cluster root –maintain cluster matrix table –update cluster matrix table –serve to application user route generated application data forward application data to/from higher layer –bridge to core network Slide 40

41 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Emulator (III) cluster root router –join to PAN scan neighbor select parent based on distance to PAN coord, radio metric (RSSI) request address allocation(or cluster root), routing table(cluster matrix) –establish link –routing check within same cluster –select inward or outward link based on address not in same cluster –calculate route metric –select cluster tree link or inter cluster mesh link forwarding packet –queuing –route update maintain link within cluster –send hello periodically to device –request link status maintain cluster root –send hello periodically to root router –request cluster root status update route table –within cluster –cluster matrix for whole network Slide 41

42 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Emulator (IV) router –join to PAN –routing –route update device –join to PAN –data application user –generate data –receive data network events –device join/leave –router join/leave –cluster root router join/leave Slide 42

43 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Emulator (IV) emulator scheduler device emulator –memory –control processor –MAC –PHY radio communication emulator –interference –transmission application user emulator L2R network emulator –PAC coordinator –cluster root router –router –end device Slide 43

44 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 L2R PHY/MAC PHY –PAN coordinator – device : 100Kbps 868MHz, O-QPSK, 25ksymbol/s BaseSlotDuration (2.4ms, 30bytes) –device – device : 250Kbps 2.4G, OQPSK, 62.5ksymbol/s BaseSlotDuration (0.96ms, 30bytes) MAC –superframe slot length = 2 SO * BaseSlotDuration superframe duration = slot length x 16 beacon interval = 2 BO * BaseSlotDuration x 16 –nonbeacon-enabled PAN 100Kbps –slot length = 19.2ms –IEEE 802.15.4 beacon enabled PAN 250Kbps : BO = 7 (BI = 1.966 sec), SO = 3 (SD = 122.88ms) –slot length = 7.68ms, CAP = 8 x 7.68 = 56.54ms, CFP = 7 x 7.68 = 53.76ms –IEEE 802.15.4e DSME PAN 250Kbps : BO = 7, SO = 3, MO = 5 (number of superframe in a multi-superframe = 2 5-3 ) Slide 44

45 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Memory for Routing (I) amount of memory per node used for routing –neighbor device table + cluster matrix + route table neighbor device table –router address 16 bit address (cluster ID + router ID) 64 bit address –link list link –link ID –link type (CAP/CFP, default/shared/dedicated) –slot ID –link quality (RSSI, interference level) –queue load (frame count, loss count) –size of device table number of device * { route address (2+8) + number of link * link infor (1+1+2+1+1) } link within 10-4 error rate –number of device = 12, number of link = 2 : 264bytes Slide 45

46 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Memory for Routing (II) cluster matrix table –router address 16 bit address (cluster ID + router ID) 64 bit address reflector address –address assigned in the parent cluster or –address of opposite end neighbor router on mesh link –distance to PAN coordinator –cluster configuration depth/number of router/number of device –child cluster list router address –16 bit address –reflector address –size of cluster matrix table {1+number of tier 1 cluster+ … + tier n-1 cluster}* {route address (2+8+2) +(1+3) + number of child root * route address (2+2) } 11x11 –number of child cluster =0, number of child root = 0 : 16bytes 33x33 –number of tier 1 ~ n-1 child cluster =0, number of child root = 12 : 112bytes 100x100 –number of tier 1 ~ n-1 child cluster =60, number of child root = 6 : 1,200bytes Slide 46

47 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Memory for Routing (III) route table –device address 16 bit address (cluster ID + router ID) –route list route –link ID –route cost (distance, link quality, router load) –size of route table number of device * { device address (2) + number of route * route infor (1+1) } in a cluster –number of destination from a cluster = 50, number of route = 8 : 900bytes amount of memory per node used for routing –11 x 11 264+16+900 = 1,180bytes –33 x 33 264+112+900 = 1,276bytes –100 x 100 264+1,200+900 = 2,364bytes Slide 47

48 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Construction Overhead 11 x 11 –when initializing network 1 packet upward 1 packets downward –when updating network full update : 1 packets downward partial update : 1 packet downward 33 x 33 –when initializing network 1 packet upward 2 packets downward –when updating network full update : 2 packets downward partial update : 1~2 packet downward 100 x 100 –when initializing network 1 packet upward 12 packets downward –when updating network full update : 12 packets downward partial update : 1~4 packet downward Slide 48

49 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Recovery Overhead 11 x 11 –when initializing network 1 packet upward 1 packets downward –when recovering network 1 packet upward 9 packets downward 33 x 33 –when initializing network 1 packet upward 2 packets downward –when recovering network 1 packet upward 9 packets downward 100 x 100 –when initializing network 1 packet upward 12 packets downward –when recovering network 1 packet upward 9 packets downward Slide 49

50 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Topology Construction and Recovery Time simulation set –IEEE 802.15.4e DSME MAC (250Kbps) –one hop : transmission error rate is less than 10-4 (two grids apart) –cluster : max 5 depth Construction Time Recovery Time Slide 50 Location of Device11x1133x33100x100 Shortest edge13.76235.388121.892 Longest edge21.62666.844220.192 Recovery Type11x1133x33100x100 Initializing13.76235.388121.892 Route Update29.4937.24

51 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 PAN Coordinator - Device Slide 51 Comm. TypePerformance11x1133x33100x100 Dev  PAN coord Number of Hops (avg, max) 2.28, 58.5, 1625.5, 50 Transmission Delay (min, avg, max) 1.96, 5.88, 17.641.96, 33.32, 60.76 1.96, 96.04, 194.04 PAN coord  Dev Number of Hops (avg, max) 2.28, 58.5, 1625.5, 50 Transmission Delay (min, avg, max) 1.96, 5.88, 17.641.96, 33.32, 60.76 1.96, 96.04, 194.04 PAN coord  Dev multicast Number of Hops (avg, max) 3.8, 514, 1645.5, 50 Transmission Delay (min, avg, max) 9.8, 13.72, 17.6445.08, 52.92, 60.76 158.76, 178.36, 194.04

52 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Device - Device Slide 52 Comm. TypePerformance11x1133x33100x100 Dev  Dev unicast Number of Hops (avg) 103299 Transmission Delay (avg) 37.24123.48386.12 Dev  Dev multicast Number of Hops (avg, max) 8.8, 1030, 3294.5, 99 Transmission Delay (min, avg, max) 29.4, 33.32, 37.24 107.8, 115.64, 123.48 350.84, 370.44, 386.12 Multi Dev  Dev Number of Hops (avg, max) 8.8, 1030, 3294.5, 99 Transmission Delay (min, avg, max) 29.4, 33.32, 37.24 107.8, 115.64, 123.48 350.84, 370.44, 386.12

53 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Power Consumption IEEE 802.15.4e DSME (BO=7, SO=3, MO=5) : CFP slots = 112 PAN coordinator : 1packet/300min device : 1 packet/min Slide 53 Comm. TypeDevice Type11x1133x33100x100 PAN coord  Dev broadcast PAN Coordinator1.058mAh/day1.321mAh/day3.747mAh/day Device0.4103mAh/day PAN coord  Dev multicast PAN Coordinator1.0267mAh/day1.0281mAh/day1.0308mAh/day Device0.4103mAh/day Dev  Dev unicast Source Device0.488mAh/day PAN Coordinator1.135mAh/day Dev  Dev multicast Source Device0.802mAh/day1.194mAh/day1.978mAh/day PAN Coordinator1.574mAh/day2.123mAh/day3.220mAh/day

54 doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Summary virtual link link path load balanced link path maintaining unbalanced cluster-tree based address assignment tiered cluster-tree routing directional multiple grades mesh connection beacon-enabled multi-hop link network formation MAC primitives & command frames Slide 54


Download ppt "Doc.: IEEE 802.15-14-0604-00-0010 Submission ETRI Sep 2014 Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission."

Similar presentations


Ads by Google