Download presentation
Presentation is loading. Please wait.
Published byIrene Cannon Modified over 9 years ago
1
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation
2
2.59 (1) Å 2.319 (6) Å 19.8 (3)° 2.02 (4) Å 2.752 (4) Å 41.6 (51)° Leung, H. O.; Marshall, M. D., J. Chem. Phys. 126, 114310 (2007). Leung, H. O.; Marshall, M. D., J. Phys. Chem. A, 118, 9783 (2014). “Top” “Side”
3
1.892 (14) Å 2.123 (1) Å 2.441 (4) Å 18.7 (15)° 18.3 (1)° 36.5 (2)° Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 400, 2004. Kisiel, Z.; Fowler, P. W.; Legon, A. C. J. Chem. Phys. 93, 1990. Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 369, 2003.
4
2.59 (1) Å 2.319 (6) Å 19.8 (3)° Leung, H. O.; Marshall, M. D., J. Phys. Chem. A, 118, 9783 (2014). Leung, H.O.; Marshall, M. D.; Feng, F., J. Phys. Chem. A 117, 13419 (2013). 2.939 (4) Å 3.01 (1) Å 58.5 (5)°
5
Energy (cm -1 )035.0552.07 Gaussian 09 MP2/6-311++G(2d,2p)
6
Chirped pulse Fourier transform microwave spectrometer: 5.6-18.1 GHz Balle-Flygare Fourier transform microwave spectrometer: 6.0-19.2 GHz Mixture was 1% vinyl chloride and 1% HCl in argon Photo courtesy of Aaron Bozzi, Amherst College Photo courtesy of Jessica Mueller, Amherst College
7
C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl A / MHz5703.7 (24)5599.27 (70)5715.19 (74)5597.8 (14) B / MHz1590.1 (12)1572.00 (15)1535.28 (13)1519.79 (17) C / MHz1267.8 (11)1253.240 (98)1235.16 (10)1219.63 (13) Highest J6444 Highest K a 2111 Number of transitions 2610128 Number of a- type transitions 21796 Number of b- type transitions 5332 RMS (MHz)3.1541.0541.1271.302
8
6 06 -5 05 Most abundant CH 2 CH 37 Cl-H 35 ClCH 2 CH 35 Cl-H 37 Cl CH 2 CH 37 Cl-H 37 Cl
9
Most abundant CH 2 CH 37 Cl-H 35 Cl CH 2 CH 35 Cl-H 37 Cl CH 2 CH 37 Cl-H 37 Cl Hyperfine patterns match
11
CH 2 CH 35 Cl-H 37 Cl Observed Predicted
12
C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl A5713.9802 (43)5554.12 (57)5672.4 (25)5599.21(34) B1588.8062 (26)1572.0212 (30)1535.234 (14)1520.9331(26) C1268.4775 (21)1254.2436(42)1236.081 (15)1219.32091(95) J /10 3 2.6420(96)7.137(43)6.92(20)1.86(10)** J K /10 3 37.28(68) aa (HCl) –41.367(17)–41.953(27)–32.6361(72)–33.1028(97) bb (HCl) 14.369(14)14.966(18)11.3647(84)11.7992(93) cc (HCl) 26.998(14)26.987(20)21.2715(84)21.3036(91) | ab \ (HCl) 29.59(70)30.6(11)23.39(40)21.19(46) aa (v.c.) 24.3635(55)19.6229(94)24.4065(34)19.6271(46) bb (v.c.) 53.653(14) –42.864(18)–53.5171(91)–43.186(11) cc (v.c.) 29.289(11)23.241(14)29.1105(75)23.5586(81) | ab \ (v.c.) 25.73(65)19.08(84)*27.05(37)18.40(39) rms / kHz3.419.317.458.27 * | bc \ = 36.0(25)** J /10 3 =0.395(76)
13
Assume no efg perturbation upon complexation, g = angle between HCl and the g inertial axis. aa 30.56 o bb 116.96 o cc 105.01 o
14
Assume no efg perturbation upon complexation, and principal axis along C–Cl bond. g = angle between C–Cl bond and the g inertial axis. aa 73.84 o bb 18.74 o cc 80.76 o
15
2.5989(39) Å 3.0942(26) Å 29.573(15)° 96.2289(69)° P cc is over 4 amu Å 2 – complex is not planar Use quadrupole coupling constants to determine angles Fit Cl–Cl separation to I a, I b and I c for three isotopologues RMS = 1.59 amu Å 2
16
Nuclear quadrupole coupling hyperfine splitting analyzed for several transitions in three isotopologues in ground tunneling state of vinyl chloride–HCl Deviations observed in some transitions Often one half of an asymmetry doublet appears “normal,” while the other can’t be fit Angular information from quadrupole coupling constants is helpful in structure determination
17
C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl 3 03 – 2 02 4 04 – 3 03 5 05 – 4 04 6 06 – 5 05 4 14 – 3 13 5 15 – 4 14 5 14 – 4 13 5 15 – 4 14 3 13 – 2 02
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.