Presentation is loading. Please wait.

Presentation is loading. Please wait.

Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,

Similar presentations


Presentation on theme: "Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,"— Presentation transcript:

1 Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab, November 2, 2012

2 -- 2 -- V.S. Morozov 11/02/2012 Outline G4beamline/GEANT4 Model Ion and Electron Detector Region  Optics  Magnet Parameters  Acceptance, Momentum and Angle Resolution Current status of the design optimization High-luminosity interaction region Outlook and R&D

3 -- 3 -- V.S. Morozov 11/02/2012 MEIC Full-Acceptance Detector

4 -- 4 -- V.S. Morozov 11/02/2012 Detector’s 3D Model

5 -- 5 -- V.S. Morozov 11/02/2012 Detector Region Magnets

6 -- 6 -- V.S. Morozov 11/02/2012 GEANT4 Model Detector solenoid –4 T field at the center, 5 m long, 2.5 m inner radius, IP 2 m downstream from edge Small spectrometer dipole in front of the FFB –2 T (@ 100 GeV/c), 1 m long, hard-edge uniform field –Interaction plane and dipole are rotated around z to compensate orbit offset FFB Big spectrometer dipole –4 m downstream of the FFB, sector bend, 3.5 m long, 60 mrad bending angle (21 Tm, 6 T @ 100 GeV/c),  40 cm square aperture

7 -- 7 -- V.S. Morozov 11/02/2012 Ion Detector Region Optics Downstream FFB: quad lengths = 1.2, 2.4, 1.2 m, quad strengths @ 100 GeV/c = -89.0, 51.1, -35.7 T/m 2 T (@ 100 GeV/c) outward-bending dipole in front of the final focus 6 T (@ 100 GeV/c) inward-bending dipole 4 m downstream of the final focus Ion beam IP x 4.4 m 7 m

8 -- 8 -- V.S. Morozov 11/02/2012 Ion Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Detector solenoidSC4N/A5250 Downstream ion side Ion spectrometer dipole 1 SC2N/A120525~60 mrad field rotation Septum? Downstream ion quad 1SC989.01.210.1735+h/v orbit corrector? Downstream ion quad 2SC951.12.417.69.246+h/v orbit corrector? Downstream ion quad 3SC735.71.219.612.663+h/v orbit corrector? Ion spectrometer dipole 2 SC6N/A3.54017.889rectangular or sector? Upstream ion side Upstream ion quad 1SC5.4180.50.83104.422+h/v orbit corrector? Upstream ion quad 2SC3.485.71.84115.929.5+h/v orbit corrector? Upstream ion quad 3SC2.563.00.84118.241+h/v orbit corrector? * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on e beam side by beam separation

9 -- 9 -- V.S. Morozov 11/02/2012 Downstream Ion FFB Acceptance for Protons Quad apertures = B max / (field gradient @ 100 GeV/c) 6 T max 9 T max 12 T max  electron beam

10 -- 10 -- V.S. Morozov 11/02/2012 Downstream Ion FFB Acceptance for Protons Uniform spreads:  0.7 in  p/p and  1  in horizontal/vertical angle Apertures: Quads = 9, 9, 7 T / (  B y /  x @ 100 GeV/c)  electron beam

11 -- 11 -- V.S. Morozov 11/02/2012 Downstream Ion FFB Acceptance for Neutrons 6 T max 9 T max 12 T max Neutrons uniformly distributed within  1  horizontal & vertical angles around proton beam Each quad aperture = B max / (field gradient @ 100 GeV/c)  electron beam

12 -- 12 -- V.S. Morozov 11/02/2012 Acceptance of Downstream Ion Final Focus Uniform distribution horizontally & vertically within  1  around protons Apertures: Quads = 9, 9, 7 T / (  B y /  x @ 100 GeV/c), Big Dipole = -30/+50  40 cm  electron beam  p/p = -0.5  p/p = 0  p/p = 0.5 neutrons

13 -- 13 -- V.S. Morozov 11/02/2012 Forward Ion Momentum & Angle Resolution Protons with  p/p spread launched at different angles to nominal trajectory  electron beam ±10  @ 60 GeV/c |  p/p| > 0.005 @  x,y = 0

14 -- 14 -- V.S. Morozov 11/02/2012 Forward Ion Momentum & Angle Resolution Protons with different  p/p launched with  x spread around nominal trajectory |  x | > 3 mrad @  p/p = 0  electron beam  electron beam ±10  @ 60 GeV/c

15 -- 15 -- V.S. Morozov 11/02/2012 Electron Detector Region Optics Similar to ion detector design Detector solenoid is not included Still need to address: –Transverse coupling –Effect on the polarization Electron beam IP x 4 m 3 m

16 -- 16 -- V.S. Morozov 11/02/2012 Electron Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Downstream electron side Downstream electron quad 1SC667.10.39420 Downstream electron quad 2SC637.30.5165.325.5 Downstream electron quad 3SC310.20.3307.839 Electron spectrometer dipole 1warm1.2N/A1.52018.190.5 Electron spectrometer dipole 2warm1.2N/A1.52019.899Merge dipoles 1 & 2? Upstream electron side Upstream electron quad 1permanent0.3150.523315 Upstream electron quad 2permanent0.3150.5233.7518.8 Upstream electron quad 3SC0.734.00.5294.522.5 Upstream electron quad 4SC1.845.60.5411630 Upstream electron quad 5SC1.538.00.34116.733.5 * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on ion beam side by beam separation

17 -- 17 -- V.S. Morozov 11/02/2012 Acceptance of Downstream Electron Final Focus 5 GeV/c e -, uniform spreads: -0.5/0 in  p/p and  25 mrad in horizontal/vertical angle Apertures: Quads = 6, 6, 3 T / (  B y /  x @ 11 GeV/c), Dipoles =  20  20 cm ion beam 

18 -- 18 -- V.S. Morozov 11/02/2012 Acceptance of Downstream Electron Final Focus Uniform e - distribution horizontally & vertically within  25 mrad around 5 GeV/c beam Apertures: Quads = 6, 6, 3 T / (  B y /  x @ 11 GeV/c), Dipoles =  20  20 cm  p/p = -0.5  p/p = -0.25  p/p = -0.1  p/p = 0 ion beam  ion beam 

19 -- 19 -- V.S. Morozov 11/02/2012 Forward Electron Momentum & Angle Resolution Electrons with  p/p spread launched at different angles to nominal 5 GeV/c trajectory |  p/p| > 0.01 @  x,y = 0 ion beam 

20 -- 20 -- V.S. Morozov 11/02/2012 Forward Electron Momentum & Angle Resolution Electrons with different  p/p launched with  x spread around nominal 5 GeV/c trajectory |  x | > 0.4-4 mrad @  p/p = 0 ion beam 

21 -- 21 -- V.S. Morozov 11/02/2012 Detector Region Model

22 -- 22 -- V.S. Morozov 11/02/2012 Downstream Electron / Upstream Ion Side L = 40 cm, IR = 9.2 cm, 64.9 T/m max, 6 T max L = 60 cm, IR = 14.4 cm, 41.6 T/m max, 6 T max L = 30 cm, IR = 19.7 cm, 7.6 T/m max, 1.5 T max L = 1.2 m, IR = 3 cm, 124.6 T/m max, 3.7 T max L = 1.5 m, IR = 4 cm, 112.3 T/m max, 4.5 T max L = 0.5 m, IR = 4 cm, 118.3 T/m max, 4.7 T max 9.8 cm 6.6 cm 9.6 cm 10 x 5.3 cm 10 x 6.8 cm

23 -- 23 -- V.S. Morozov 11/02/2012 Electron Detector Region Optics Electron beam

24 -- 24 -- V.S. Morozov 11/02/2012 Ion Detector Region Optics Ion beam

25 -- 25 -- V.S. Morozov 11/02/2012 Ion Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Detector solenoidSC4N/A5250 Downstream ion side Ion spectrometer dipole 1SC2N/A120525~60 mrad field rotation Septum? Downstream ion quad 1SC988.91.210.1735+h/v orbit corrector? Downstream ion quad 2SC950.92.417.79.246+h/v orbit corrector? Downstream ion quad 3SC735.51.219.712.663+h/v orbit corrector? Ion spectrometer dipole 2SC5N/A43017.889rectangular or sector? Upstream ion side Upstream ion quad 1SC3.7124.61.234.422+h/v orbit corrector? Upstream ion quad 2SC4.5112.31.545.929.53x arc FODO dipole? Upstream ion quad 3SC4.7118.30.548.241arc FODO dipole? * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on e beam side by beam separation

26 -- 26 -- V.S. Morozov 11/02/2012 Electron Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Downstream electron side Downstream electron quad 1SC664.90.49.2420 Downstream electron quad 2SC641.60.614.44.824 Downstream electron quad 3SC1.57.60.319.75.728.5 Electron spectrometer dipole 1warm1.2N/A1.5201680 Electron spectrometer dipole 2warm1.2N/A1.52017.788.5Merge dipoles 1 & 2? Upstream electron side Upstream electron quad 1permanent0.3150.523315 Upstream electron quad 2permanent0.3150.5233.7518.8 Upstream electron quad 3SC0.734.00.5294.522.5 Upstream electron quad 4SC1.845.60.5411630 Upstream electron quad 5SC1.538.00.34116.733.5 * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on ion beam side by beam separation

27 -- 27 -- V.S. Morozov 11/02/2012 High-Luminosity Detector Region Optics Smaller detector space Assume the same chromatic contribution as the full-acceptance IR  * x/y reduced to 7.5/1.5 cm  ~33% luminosity increase  Theoretical luminosity increase naively (4.4+7)/(3.5+4.5)  1.43 but since focal distance is longer than the detector space (5.4+8)/(4.5+5.5)  1.34 3.5 m 4.5 m IP x

28 -- 28 -- V.S. Morozov 11/02/2012 Outlook and R&D


Download ppt "Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,"

Similar presentations


Ads by Google