Presentation is loading. Please wait.

Presentation is loading. Please wait.

Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.

Similar presentations


Presentation on theme: "Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation."— Presentation transcript:

1 Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation International Center of Quantum Structures

2 Outline Berry phase—an introduction Semiclassical transport Anomalous Hall effect Summary

3 Geometric phase: Adiabatic theorem: Berry Phase Parameter dependent system:

4 Well defined for a closed path Stokes theorem Berry Curvature

5 Berry curvature Magnetic field Berry connectionVector potential Geometric phase Aharonov-Bohm phase Chern number Dirac monopole Analogies

6 Applications Berry phase interference, energy levels, polarization in crystals Berry curvature spin dynamics, electron dynamics in Bloch bands Chern number quantum Hall effect, quantum charge pump

7

8

9

10

11

12 Hall effect Ordinary Hall effect (1879) Anomalous Hall effect (1880&1881)

13 P.N. Dheer, Phys Rev (1967) RsMsRsMs Slope = R 0 AHE in Fe Whisker

14 Magnetic semiconductor

15 Early theories Karplus & Luttinger (1954) Intrinsic Hall conductivity J. Smit (1958) –Skew scattering L. Berger, (1970) –Side jump

16 Our theory velocity distribution g( ) = f( ) +  f( ) current

17 J. P. Jan, Helv. Phys. Acta 25, 677 (1952) Temperature dependence of AHE

18 Wien2000: LAPW spin density functional generalized gradient approximation spin-orbit coupling included in the APW sphere. Ferromagnetic bcc Fe YuguiYao et al: Phys. Rev. Lett. 92, 037204 (2004)

19 Band structure: bcc Fe

20 Berry curvature

21 Berry Curvature in the xz plane

22 Dheer (1967) 1032 (ohm cm)-1 Krinchik and Gushchin (1969). Comparison with experiments

23 Kubo formula

24 Transition metals anomalous Hall conductivity (ohm cm) -1 Theory Experiment bcc iron 750 1030 (a) hcp cobalt 443 500 (b) fcc nickel -2100 -753 (c) (a) P.N. Dheer,Phys.Rev 156, 637 (1967). (b) W. Jellinghaus and M. P. De Andres, Ann. Phys. &, 189 (1961). (c) J. Smit, J. Physica 21, 877 (1955).

25 AHE in other systems Mn x Ga 1-x As: –Jungwirth, Niu, & MacDonald Phys. Rev. Lett. 88, 207208 (2002) SrRuO3: –Zhong et at, Science 302, 92 (2003).

26 Doping dependence Jungwirth et al : Appl. Phys. Lett. 83, 320 (2003).

27 AHE in two dimensions Culcer, MacDonald, Niu Phys. Rev. B 68, 045327 (2003). Rashba

28 Zincblende n-type HgTe quantum wells X. C. Zhang et al PRB 63, 245305 (2001)

29 Summary Berry phase A unifying concept with many applications Bloch electron dynamics in weak fields Berry phase around the Brillouin zone: ------ Polarization Berry curvature: a ‘magnetic field’ in the k space. ----- Anomalous Hall effect Phase space density of states is modified. ----- Orbital magnetization, etc.


Download ppt "Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation."

Similar presentations


Ads by Google