Download presentation
Presentation is loading. Please wait.
Published byJeffry Snow Modified over 9 years ago
1
SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053
2
SE301_Topic 6Al-Amer20052 Lecture 17 Introduction to Numerical Integration Definitions Upper and Lower Sums Trapezoid Method Examples
3
SE301_Topic 6Al-Amer20053 Integration Indefinite Integrals Indefinite Integrals of a function are functions that differ from each other by a constant. Definite Integrals Definite Integrals are numbers.
4
SE301_Topic 6Al-Amer20054 Fundamental Theorem of Calculus
5
SE301_Topic 6Al-Amer20055 The Area Under the Curve One interpretation of the definite integral is Integral = area under the curve ab f(x)
6
SE301_Topic 6Al-Amer20056 Numerical Integration Methods Numerical integration Methods Covered in this course Upper and Lower Sums Newton-Cotes Methods: Trapezoid Rule Simpson Rules Romberg Method Gauss Quadrature
7
SE301_Topic 6Al-Amer20057 Upper and Lower Sums ab f(x) The interval is divided into subintervals
8
SE301_Topic 6Al-Amer20058 Upper and Lower Sums ab f(x)
9
SE301_Topic 6Al-Amer20059 Example
10
SE301_Topic 6Al-Amer200510 Example
11
SE301_Topic 6Al-Amer200511 Upper and Lower Sums Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing). For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.
12
SE301_Topic 6Al-Amer200512 Newton-Cotes Methods In Newton-Cote Methods, the function is approximated by a polynomial of order n Computing the integral of a polynomial is easy.
13
SE301_Topic 6Al-Amer200513 Newton-Cotes Methods Trapezoid Method ( First Order Polynomial are used ) Simpson 1/3 Rule ( Second Order Polynomial are used ),
14
SE301_Topic 6Al-Amer200514 Trapezoid Method f(x)
15
SE301_Topic 6Al-Amer200515 Trapezoid Method Derivation-One interval
16
SE301_Topic 6Al-Amer200516 Trapezoid Method f(x)
17
SE301_Topic 6Al-Amer200517 Trapezoid Method Multiple Application Rule ab f(x) x
18
SE301_Topic 6Al-Amer200518 Trapezoid Method General Formula and special case
19
SE301_Topic 6Al-Amer200519 Example Given a tabulated values of the velocity of an object. Obtain an estimate of the distance traveled in the interval [0,3]. Time (s)0.01.02.03.0 Velocity (m/s)0.0101214 Distance = integral of the velocity
20
SE301_Topic 6Al-Amer200520 Example 1 Time (s)0.01.02.03.0 Velocity (m/s) 0.0101214
21
SE301_Topic 6Al-Amer200521 Estimating the Error For Trapezoid method
22
SE301_Topic 6Al-Amer200522 Error in estimating the integral Theorem
23
SE301_Topic 6Al-Amer200523 Example
24
SE301_Topic 6Al-Amer200524 Example x1.01.52.02.53.0 f(x)2.13.23.42.82.7
25
SE301_Topic 6Al-Amer200525 Example x1.01.52.02.53.0 f(x)2.13.23.42.82.7
26
SE301_Topic 6Al-Amer200526 SE301: Numerical Method Lecture 18 Recursive Trapezoid Method Recursive formula is used
27
SE301_Topic 6Al-Amer200527 Recursive Trapezoid Method f(x)
28
SE301_Topic 6Al-Amer200528 Recursive Trapezoid Method f(x) Based on previous estimate Based on new point
29
SE301_Topic 6Al-Amer200529 Recursive Trapezoid Method f(x) Based on previous estimate Based on new points
30
SE301_Topic 6Al-Amer200530 Recursive Trapezoid Method Formulas
31
SE301_Topic 6Al-Amer200531 Recursive Trapezoid Method
32
SE301_Topic 6Al-Amer200532 Advantages of Recursive Trapezoid Recursive Trapezoid: Gives the same answer as the standard Trapezoid method. Make use of the available information to reduce computation time. Useful if the number of iterations is not known in advance.
33
SE301_Topic 6Al-Amer200533 SE301:Numerical Methods 19. Romberg Method Motivation Derivation of Romberg Method Romberg Method Example When to stop?
34
SE301_Topic 6Al-Amer200534 Motivation for Romberg Method Trapezoid formula with an interval h gives error of the order O(h 2 ) We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate.
35
SE301_Topic 6Al-Amer200535 Romberg Method First column is obtained using Trapezoid Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) The other elements are obtained using the Romberg Method
36
SE301_Topic 6Al-Amer200536 First Column Recursive Trapezoid Method
37
SE301_Topic 6Al-Amer200537 Derivation of Romberg Method
38
SE301_Topic 6Al-Amer200538 Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3)
39
SE301_Topic 6Al-Amer200539 Property of Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) Error Level
40
SE301_Topic 6Al-Amer200540 Example 1 0.5 3/81/3
41
SE301_Topic 6Al-Amer200541 Example 1 cont. 0.5 3/81/3 11/321/3
42
SE301_Topic 6Al-Amer200542 When do we stop?
43
SE301_Topic 6Al-Amer200543 SE301:Numerical Methods 20. Gauss Quadrature Motivation General integration formula Read 22.3-22.3
44
SE301_Topic 6Al-Amer200544 Motivation
45
SE301_Topic 6Al-Amer200545 General Integration Formula
46
SE301_Topic 6Al-Amer200546 Lagrange Interpolation
47
SE301_Topic 6Al-Amer200547 Question What is the best way to choose the nodes and the weights?
48
SE301_Topic 6Al-Amer200548 Theorem
49
SE301_Topic 6Al-Amer200549 Weighted Gaussian Quadrature Theorem
50
SE301_Topic 6Al-Amer200550 Determining The Weights and Nodes
51
SE301_Topic 6Al-Amer200551 Determining The Weights and Nodes Solution
52
SE301_Topic 6Al-Amer200552 Theorem
53
SE301_Topic 6Al-Amer200553 Determining The Weights and Nodes Solution
54
SE301_Topic 6Al-Amer200554 Determining The Weights and Nodes Solution
55
SE301_Topic 6Al-Amer200555 Gaussian Quadrature See more in Table 22.1 (page 626) 626
56
SE301_Topic 6Al-Amer200556 Error Analysis for Gauss Quadrature 627
57
SE301_Topic 6Al-Amer200557 Example
58
SE301_Topic 6Al-Amer200558 Example
59
SE301_Topic 6Al-Amer200559 Improper Integrals 627
60
SE301_Topic 6Al-Amer200560 Quiz x1.01.52.02.53.0 f(x)2.13.23.42.82.7
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.