Presentation is loading. Please wait.

Presentation is loading. Please wait.

SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053.

Similar presentations


Presentation on theme: "SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053."— Presentation transcript:

1 SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053

2 SE301_Topic 6Al-Amer20052 Lecture 17 Introduction to Numerical Integration  Definitions  Upper and Lower Sums  Trapezoid Method  Examples

3 SE301_Topic 6Al-Amer20053 Integration Indefinite Integrals Indefinite Integrals of a function are functions that differ from each other by a constant. Definite Integrals Definite Integrals are numbers.

4 SE301_Topic 6Al-Amer20054 Fundamental Theorem of Calculus

5 SE301_Topic 6Al-Amer20055 The Area Under the Curve One interpretation of the definite integral is Integral = area under the curve ab f(x)

6 SE301_Topic 6Al-Amer20056 Numerical Integration Methods Numerical integration Methods Covered in this course  Upper and Lower Sums  Newton-Cotes Methods:  Trapezoid Rule  Simpson Rules  Romberg Method  Gauss Quadrature

7 SE301_Topic 6Al-Amer20057 Upper and Lower Sums ab f(x) The interval is divided into subintervals

8 SE301_Topic 6Al-Amer20058 Upper and Lower Sums ab f(x)

9 SE301_Topic 6Al-Amer20059 Example

10 SE301_Topic 6Al-Amer200510 Example

11 SE301_Topic 6Al-Amer200511 Upper and Lower Sums Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing). For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.

12 SE301_Topic 6Al-Amer200512 Newton-Cotes Methods  In Newton-Cote Methods, the function is approximated by a polynomial of order n  Computing the integral of a polynomial is easy.

13 SE301_Topic 6Al-Amer200513 Newton-Cotes Methods Trapezoid Method ( First Order Polynomial are used ) Simpson 1/3 Rule ( Second Order Polynomial are used ),

14 SE301_Topic 6Al-Amer200514 Trapezoid Method f(x)

15 SE301_Topic 6Al-Amer200515 Trapezoid Method Derivation-One interval

16 SE301_Topic 6Al-Amer200516 Trapezoid Method f(x)

17 SE301_Topic 6Al-Amer200517 Trapezoid Method Multiple Application Rule ab f(x) x

18 SE301_Topic 6Al-Amer200518 Trapezoid Method General Formula and special case

19 SE301_Topic 6Al-Amer200519 Example Given a tabulated values of the velocity of an object. Obtain an estimate of the distance traveled in the interval [0,3]. Time (s)0.01.02.03.0 Velocity (m/s)0.0101214 Distance = integral of the velocity

20 SE301_Topic 6Al-Amer200520 Example 1 Time (s)0.01.02.03.0 Velocity (m/s) 0.0101214

21 SE301_Topic 6Al-Amer200521 Estimating the Error For Trapezoid method

22 SE301_Topic 6Al-Amer200522 Error in estimating the integral Theorem

23 SE301_Topic 6Al-Amer200523 Example

24 SE301_Topic 6Al-Amer200524 Example x1.01.52.02.53.0 f(x)2.13.23.42.82.7

25 SE301_Topic 6Al-Amer200525 Example x1.01.52.02.53.0 f(x)2.13.23.42.82.7

26 SE301_Topic 6Al-Amer200526 SE301: Numerical Method Lecture 18 Recursive Trapezoid Method Recursive formula is used

27 SE301_Topic 6Al-Amer200527 Recursive Trapezoid Method f(x)

28 SE301_Topic 6Al-Amer200528 Recursive Trapezoid Method f(x) Based on previous estimate Based on new point

29 SE301_Topic 6Al-Amer200529 Recursive Trapezoid Method f(x) Based on previous estimate Based on new points

30 SE301_Topic 6Al-Amer200530 Recursive Trapezoid Method Formulas

31 SE301_Topic 6Al-Amer200531 Recursive Trapezoid Method

32 SE301_Topic 6Al-Amer200532 Advantages of Recursive Trapezoid Recursive Trapezoid:  Gives the same answer as the standard Trapezoid method.  Make use of the available information to reduce computation time.  Useful if the number of iterations is not known in advance.

33 SE301_Topic 6Al-Amer200533 SE301:Numerical Methods 19. Romberg Method Motivation Derivation of Romberg Method Romberg Method Example When to stop?

34 SE301_Topic 6Al-Amer200534 Motivation for Romberg Method  Trapezoid formula with an interval h gives error of the order O(h 2 )  We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate.

35 SE301_Topic 6Al-Amer200535 Romberg Method First column is obtained using Trapezoid Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) The other elements are obtained using the Romberg Method

36 SE301_Topic 6Al-Amer200536 First Column Recursive Trapezoid Method

37 SE301_Topic 6Al-Amer200537 Derivation of Romberg Method

38 SE301_Topic 6Al-Amer200538 Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3)

39 SE301_Topic 6Al-Amer200539 Property of Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) Error Level

40 SE301_Topic 6Al-Amer200540 Example 1 0.5 3/81/3

41 SE301_Topic 6Al-Amer200541 Example 1 cont. 0.5 3/81/3 11/321/3

42 SE301_Topic 6Al-Amer200542 When do we stop?

43 SE301_Topic 6Al-Amer200543 SE301:Numerical Methods 20. Gauss Quadrature Motivation General integration formula Read 22.3-22.3

44 SE301_Topic 6Al-Amer200544 Motivation

45 SE301_Topic 6Al-Amer200545 General Integration Formula

46 SE301_Topic 6Al-Amer200546 Lagrange Interpolation

47 SE301_Topic 6Al-Amer200547 Question What is the best way to choose the nodes and the weights?

48 SE301_Topic 6Al-Amer200548 Theorem

49 SE301_Topic 6Al-Amer200549 Weighted Gaussian Quadrature Theorem

50 SE301_Topic 6Al-Amer200550 Determining The Weights and Nodes

51 SE301_Topic 6Al-Amer200551 Determining The Weights and Nodes Solution

52 SE301_Topic 6Al-Amer200552 Theorem

53 SE301_Topic 6Al-Amer200553 Determining The Weights and Nodes Solution

54 SE301_Topic 6Al-Amer200554 Determining The Weights and Nodes Solution

55 SE301_Topic 6Al-Amer200555 Gaussian Quadrature See more in Table 22.1 (page 626) 626

56 SE301_Topic 6Al-Amer200556 Error Analysis for Gauss Quadrature 627

57 SE301_Topic 6Al-Amer200557 Example

58 SE301_Topic 6Al-Amer200558 Example

59 SE301_Topic 6Al-Amer200559 Improper Integrals 627

60 SE301_Topic 6Al-Amer200560 Quiz x1.01.52.02.53.0 f(x)2.13.23.42.82.7


Download ppt "SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053."

Similar presentations


Ads by Google