Presentation is loading. Please wait.

Presentation is loading. Please wait.

Adjacent, Vertical, Supplementary, and Complementary Angles.

Similar presentations


Presentation on theme: "Adjacent, Vertical, Supplementary, and Complementary Angles."— Presentation transcript:

1

2 Adjacent, Vertical, Supplementary, and Complementary Angles

3 Adjacent angles 45º 15º Angles that are “side by side” and share a common ray are called?

4 adjacent angles. 55º 35º 50º130º 80º 45º 85º 20º These are examples of what type of angles?

5 These angles are examples of? 45º55º 50º 100º 35º Non- Adjacent

6 When 2 lines intersect, they make what type of angles? 75º 105º vertical angles

7 What type of angles are opposite one another? 75º 105º Vertical angles

8 Vertical angles are opposite one another. What is the measure of angle A? 75º A 105º

9 Vertical angles are? 30º150º 30º congruent (equal).

10 Supplementary angles add up to? 60º120º 40º 140º Adjacent and Supplementary Angles Supplementary Angles but not Adjacent 180º

11 Complementary angles add up to 60º 30º 40º 50º Adjacent and Complementary Angles Complementary Angles but not Adjacent 90º.

12 Angles Around a Point Angles around a point will always add up to The angles above all add to 360° 53° + 80° + 140° + 87° = 360° 360 degrees.

13

14 Practice Time!

15 Directions: Identify each pair of angles as vertical, supplementary, complementary, or none of the above.

16 #1 60º 120º

17 #1 60º 120º Supplementary Angles

18 #2 60º 30º

19 #2 60º 30º Complementary Angles

20 #3 75º

21 #3 75º Vertical Angles

22 #4 60º 40º

23 #4 60º 40º None of the above

24 #5 60º

25 #5 60º Vertical Angles

26 #6 45º135º

27 #6 45º135º Supplementary Angles

28 #7 65º 25º

29 #7 65º 25º Complementary Angles

30 #8 50º 90º

31 #8 50º 90º None of the above

32 1 2 3 5 Are angles 4 and 5 supplementary angles? Are angles 2 and 3 complementary angles? Are angles 2 and 1 complementary angles? Are angles 4 and 3 supplementary angles? no yes Now, think of what we talked about today. 4

33 Name the adjacent angles and linear pair of angles in the given figure: Adjacent angles:  ABD and  DBC  ABE and  DBA Linear pair of angles:  EBA,  ABC C D B A E 60 0 30 0 90 0  EBD,  DBC C D B A E 60 0 30 0 90 0

34 Name the vertically opposite angles and adjacent angles in the given figure: A D B C P Vertically opposite angles:  APC and  BPD  APB and  CPD Adjacent angles:  APC and  CPD  APB and  BPD

35 Pairs Of Angles Formed by a Transversal Corresponding angles Alternate angles Interior angles

36 Corresponding Angles When two parallel lines are cut by a transversal, pairs of corresponding angles are formed. Four pairs of corresponding angles are formed. Corresponding pairs of angles are congruent.  GPB =  PQE  GPA =  PQD  BPQ =  EQF  APQ =  DQF Line M B A Line N D E L P Q G F Line L

37 Alternate Angles Alternate angles are formed on opposite sides of the transversal and at different intersecting points. Line M B A Line N D E L P Q G F Line L  BPQ =  DQP  APQ =  EQP Pairs of alternate angles are congruent. Two pairs of alternate angles are formed.

38 The angles that lie in the area between the two parallel lines that are cut by a transversal, are called interior angles. A pair of interior angles lie on the same side of the transversal. The measures of interior angles in each pair add up to 180 0. Interior Angles Line M B A Line N D E L P Q G F Line L 60 0 120 0 60 0  BPQ +  EQP = 180 0  APQ +  DQP = 180 0

39 Name the pairs of the following angles formed by a transversal. Line M B A Line N DE P Q G F Line L Line M B A Line N D E P Q G F Line L Line M B A Line N D E P Q G F Line L 50 0 130 0

40 Directions: Determine the missing angle.

41 #1 45º?º?º

42 #1 45º135º

43 #2 65º ?º?º

44 #2 65º 25º

45 #3 35º ?º?º

46 #3 35º

47 #4 50º ?º?º

48 #4 50º 130º

49 Find the value of x.

50 #5 140º ?º?º

51 #5 140º

52 Find the value of x.

53 #6 40º ?º?º

54 #6 40º 50º

55


Download ppt "Adjacent, Vertical, Supplementary, and Complementary Angles."

Similar presentations


Ads by Google