Download presentation
Presentation is loading. Please wait.
Published byHugh York Modified over 8 years ago
2
Adjacent, Vertical, Supplementary, and Complementary Angles
3
Adjacent angles 45º 15º Angles that are “side by side” and share a common ray are called?
4
adjacent angles. 55º 35º 50º130º 80º 45º 85º 20º These are examples of what type of angles?
5
These angles are examples of? 45º55º 50º 100º 35º Non- Adjacent
6
When 2 lines intersect, they make what type of angles? 75º 105º vertical angles
7
What type of angles are opposite one another? 75º 105º Vertical angles
8
Vertical angles are opposite one another. What is the measure of angle A? 75º A 105º
9
Vertical angles are? 30º150º 30º congruent (equal).
10
Supplementary angles add up to? 60º120º 40º 140º Adjacent and Supplementary Angles Supplementary Angles but not Adjacent 180º
11
Complementary angles add up to 60º 30º 40º 50º Adjacent and Complementary Angles Complementary Angles but not Adjacent 90º.
12
Angles Around a Point Angles around a point will always add up to The angles above all add to 360° 53° + 80° + 140° + 87° = 360° 360 degrees.
14
Practice Time!
15
Directions: Identify each pair of angles as vertical, supplementary, complementary, or none of the above.
16
#1 60º 120º
17
#1 60º 120º Supplementary Angles
18
#2 60º 30º
19
#2 60º 30º Complementary Angles
20
#3 75º
21
#3 75º Vertical Angles
22
#4 60º 40º
23
#4 60º 40º None of the above
24
#5 60º
25
#5 60º Vertical Angles
26
#6 45º135º
27
#6 45º135º Supplementary Angles
28
#7 65º 25º
29
#7 65º 25º Complementary Angles
30
#8 50º 90º
31
#8 50º 90º None of the above
32
1 2 3 5 Are angles 4 and 5 supplementary angles? Are angles 2 and 3 complementary angles? Are angles 2 and 1 complementary angles? Are angles 4 and 3 supplementary angles? no yes Now, think of what we talked about today. 4
33
Name the adjacent angles and linear pair of angles in the given figure: Adjacent angles: ABD and DBC ABE and DBA Linear pair of angles: EBA, ABC C D B A E 60 0 30 0 90 0 EBD, DBC C D B A E 60 0 30 0 90 0
34
Name the vertically opposite angles and adjacent angles in the given figure: A D B C P Vertically opposite angles: APC and BPD APB and CPD Adjacent angles: APC and CPD APB and BPD
35
Pairs Of Angles Formed by a Transversal Corresponding angles Alternate angles Interior angles
36
Corresponding Angles When two parallel lines are cut by a transversal, pairs of corresponding angles are formed. Four pairs of corresponding angles are formed. Corresponding pairs of angles are congruent. GPB = PQE GPA = PQD BPQ = EQF APQ = DQF Line M B A Line N D E L P Q G F Line L
37
Alternate Angles Alternate angles are formed on opposite sides of the transversal and at different intersecting points. Line M B A Line N D E L P Q G F Line L BPQ = DQP APQ = EQP Pairs of alternate angles are congruent. Two pairs of alternate angles are formed.
38
The angles that lie in the area between the two parallel lines that are cut by a transversal, are called interior angles. A pair of interior angles lie on the same side of the transversal. The measures of interior angles in each pair add up to 180 0. Interior Angles Line M B A Line N D E L P Q G F Line L 60 0 120 0 60 0 BPQ + EQP = 180 0 APQ + DQP = 180 0
39
Name the pairs of the following angles formed by a transversal. Line M B A Line N DE P Q G F Line L Line M B A Line N D E P Q G F Line L Line M B A Line N D E P Q G F Line L 50 0 130 0
40
Directions: Determine the missing angle.
41
#1 45º?º?º
42
#1 45º135º
43
#2 65º ?º?º
44
#2 65º 25º
45
#3 35º ?º?º
46
#3 35º
47
#4 50º ?º?º
48
#4 50º 130º
49
Find the value of x.
50
#5 140º ?º?º
51
#5 140º
52
Find the value of x.
53
#6 40º ?º?º
54
#6 40º 50º
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.