Presentation is loading. Please wait.

Presentation is loading. Please wait.

Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.

Similar presentations


Presentation on theme: "Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter."— Presentation transcript:

1 Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System 6.2 “Skeletal Muscle Activity”

2 Properties of Skeletal Muscle Activity Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Irritability – ability to receive and respond to a stimulus  Contractility – ability to shorten when an adequate stimulus is received

3 Nerve Stimulus to Muscles Slide 6.14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Skeletal muscles must be stimulated by a nerve to contract  Motor unit  One neuron  Muscle cells stimulated by that neuron Figure 6.4a

4 Nerve Stimulus to Muscles Slide 6.15a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neuromuscular junctions – association site of nerve and muscle Figure 6.5b

5 Nerve Stimulus to Muscles Slide 6.15b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Synaptic cleft – gap between nerve and muscle  Nerve and muscle do not make contact  Area between nerve and muscle is filled with interstitial fluid Figure 6.5b

6 Transmission of Nerve Impulse to Muscle Slide 6.16a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neurotransmitter – chemical released by nerve upon arrival of nerve impulse  The neurotransmitter for skeletal muscle is acetylcholine  Neurotransmitter attaches to receptors on the sarcolemma  Sarcolemma becomes permeable to sodium (Na + )

7 Transmission of Nerve Impulse to Muscle Slide 6.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sodium rushing into the cell generates an action potential  Once started, muscle contraction cannot be stopped

8 The Sliding Filament Theory of Muscle Contraction Slide 6.17a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Activation by nerve causes myosin heads (crossbridges) to attach to binding sites on the thin filament  Myosin heads then bind to the next site of the thin filament Figure 6.7

9 The Sliding Filament Theory of Muscle Contraction Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  This continued action causes a sliding of the myosin along the actin  The result is that the muscle is shortened (contracted) Figure 6.7

10 The Sliding Filament Theory Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.8

11 Contraction of a Skeletal Muscle Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle fiber contraction is “all or none”  Within a skeletal muscle, not all fibers may be stimulated during the same interval  Different combinations of muscle fiber contractions may give differing responses  Graded responses – different degrees of skeletal muscle shortening

12 Types of Graded Responses Slide 6.20a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Twitch  Single, brief contraction  Not a normal muscle function Figure 6.9a, b

13 Types of Graded Responses Slide 6.20b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Tetanus (summing of contractions)  One contraction is immediately followed by another  The muscle does not completely return to a resting state  The effects are added Figure 6.9a, b

14 Types of Graded Responses Slide 6.21a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Unfused (incomplete) tetanus  Some relaxation occurs between contractions  The results are summed Figure 6.9a, b Figure 6.9c,d

15 Types of Graded Responses Slide 6.21b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Fused (complete) tetanus  No evidence of relaxation before the following contractions  The result is a sustained muscle contraction Figure 6.9a, b Figure 6.9c,d

16 Muscle Response to Strong Stimuli Slide 6.22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle force depends upon the number of fibers stimulated  More fibers contracting results in greater muscle tension  Muscles can continue to contract unless they run out of energy

17 Energy for Muscle Contraction Slide 6.23 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Initially, muscles used stored ATP for energy  Bonds of ATP are broken to release energy  Only 4-6 seconds worth of ATP is stored by muscles  After this initial time, other pathways must be utilized to produce ATP

18 Energy for Muscle Contraction Slide 6.24 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Direct phosphorylation  Muscle cells contain creatine phosphate (CP)  CP is a high-energy molecule  After ATP is depleted, ADP is left  CP transfers energy to ADP, to regenerate ATP  CP supplies are exhausted in about 20 seconds Figure 6.10a

19 Energy for Muscle Contraction Slide 6.25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Aerobic Respiration  Series of metabolic pathways that occur in the mitochondria  Glucose is broken down to carbon dioxide and water, releasing energy  This is a slower reaction that requires continuous oxygen Figure 6.10c

20 Energy for Muscle Contraction Slide 6.26a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Anaerobic glycolysis  Reaction that breaks down glucose without oxygen  Glucose is broken down to pyruvic acid to produce some ATP  Pyruvic acid is converted to lactic acid Figure 6.10b

21 Energy for Muscle Contraction Slide 6.26b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Anaerobic glycolysis (continued)  This reaction is not as efficient, but is fast  Huge amounts of glucose are needed  Lactic acid produces muscle fatigue Figure 6.10b

22 Muscle Fatigue and Oxygen Debt Slide 6.27 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  When a muscle is fatigued, it is unable to contract  The common reason for muscle fatigue is oxygen debt  Oxygen must be “repaid” to tissue to remove oxygen debt  Oxygen is required to get rid of accumulated lactic acid  Increasing acidity (from lactic acid) and lack of ATP causes the muscle to contract less

23 Types of Muscle Contractions Slide 6.28 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Isotonic contractions  Myofilaments are able to slide past each other during contractions  The muscle shortens  Isometric contractions  Tension in the muscles increases  The muscle is unable to shorten

24 Muscle Tone Slide 6.29 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Some fibers are contracted even in a relaxed muscle  Different fibers contract at different times to provide muscle tone  The process of stimulating various fibers is under involuntary control


Download ppt "Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter."

Similar presentations


Ads by Google