Presentation is loading. Please wait.

Presentation is loading. Please wait.

Matrix Population Models for Wildlife Conservation and Management 27 February - 5 March 2016 Jean-Dominique LEBRETON Jim NICHOLS Madan OLI Jim HINES.

Similar presentations


Presentation on theme: "Matrix Population Models for Wildlife Conservation and Management 27 February - 5 March 2016 Jean-Dominique LEBRETON Jim NICHOLS Madan OLI Jim HINES."— Presentation transcript:

1 Matrix Population Models for Wildlife Conservation and Management 27 February - 5 March 2016 Jean-Dominique LEBRETON Jim NICHOLS Madan OLI Jim HINES

2 Lecture 1 Matrix model formulation Patrick "George" LESLIE, whose famous 1945 paper launched the development of « matrix models »

3 Matrix model formulation A simple example Some numerical results A first quick look at different generalizations

4 A simple example 1) SURVIVAL in a barn swallow Hirundo rustica population Year t Year t+1 females aged 1 females aged >1 s1s1 s2s2

5 Year t Year t+1 females aged 1 females aged >1 2) REPRODUCTION in a barn swallow population s0s0 f1f1 f2f2 newborn A simple example

6 Year t Year t+1 females aged 1 females aged >1 OVERALL LIFE CYCLE in a barn swallow population s1s1 s2s2 s0s0 f1f1 f2f2 newborn A simple example

7 Females aged 1 Females aged >1 f2s0f2s0 f1s0f1s0 s1s1 s2s2 LIFE CYCLE graph in a barn swallow population A simple example

8 QUANTITATIVE LIFE CYCLE in a barn swallow population Year t Year t+1 N 1 N 1 N 2 N 2 s1s1 s2s2 s0s0 f1f1 f2f2 newborn A simple example

9 N 1 (t+1)= s 0 f 1 N 1 (t) + s 0 f 2 N 2 (t) N 2 (t+1) = s 1 N 1 (t) + s 2 N 2 (t) A simple example QUANTITATIVE LIFE CYCLE in a barn swallow population

10 A Mathematical Model i.e., a mathematical object (linear equations)… based on assumptions (discrete time scale, life cycle, constant parameters) potentially useful (numerical & formal calculations) to answer biological questions (is the pop. growing ?) easily generalizable

11 A simple example PARAMETER ESTIMATES in a barn swallow population s 0 = 0.20 f 1 =3/2 f 2 =6/2 (50 % breed at age 1, 6 young produced, divide by 2 for balanced- sex ratio) s 1 = 0.50 s 2 = 0.65 (analysis of dead recoveries)

12 Two linear N 1 (t+1) = 0.30 N 1 (t) + 0.60 N 2 (t) Equations N 2 (t+1) = 0.50 N 1 (t) + 0.65 N 2 (t) One matrix N 1 = 0.30 0.60 N 1 Equation N 2 t+1 0.50 0.65 N 2 t N t+1 = M N t, alike a product of scalars QUANTITATIVE LIFE CYCLE in a barn swallow population A simple example

13 One linear scalar equation N(t+1) = (s 0 f + s 1 ) N(t) An even simpler example QUANTITATIVE LIFE CYCLE in a house sparrow population s0s0 f newborn aged >=1 s1s1

14 t = 0 1 2 3... 0 6 5.7 6.05... N = 10 6.5 7.7 7.55... Some Numerical Results QUANTITATIVE LIFE CYCLE in a barn swallow population Two linear N 1 (t+1) = 0.30 N 1 (t) + 0.60 N 2 (t) Equations N 2 (t+1) = 0.50 N 1 (t) + 0.65 N 2 (t)

15 Trajectory over time Asymptotically exponential growth Log scale !

16 Trajectory in the phase plane Asymptotically stable age structure N1N1 N2N2

17 Trajectory over time two different initial vectors 0 10 0 Log scale !

18 Trajectory in the phase plane two different initial vectors 0 10 0 N1N1 N2N2

19 Regular (asymptotic) behaviour Partially dependent on initial conditions Encourages formal analysis (next lecture) A key assumption: constant parameters A simple example

20 Growth ? Structure ? Change in parameters ? Sustainability of human induced action ? Effect of evolutionary change ?... Model as a tool: use it to answer questions

21 Model as a tool: suggested modeling process Biological Questions Review Information available Build model Translate biological Q. into technical Q. Proceed to parameter estimation (CMR) Use model to answer Questions

22 Matrix Models: the basic Leslie age-structured model f 1 s 1 f 2 s 1 … f i s 1 … f n s 1 s 2 0 … 0 … 0 0 s 3 … 0 … 0 M = … … … … … … 0 … … s i+1 … … … … … … … … 0 0 … … s n 0 Pre birth-pulse matrix: fecundities x 1 st year survival = "net fecundities" Aging + survival: survival probabilities on 1 st sub-diagonal Please note shift in survival indices

23 Matrix Models: a first variation f 1 s 1 f 2 s 1 … f i s 1 … f n s 1 s 2 0 … 0 … 0 0 s 3 … 0 … 0 M = … … … … … … 0 … … s i+1 … … … … … … … … 0 0 … … s n s n+1 Pre birth-pulse matrix: fecundities x 1 st year survival = "net fecundities" Aging + survival: survival probabilities on 1 st sub-diagonal "n+" age class  infinite matrix

24 Age classes and time scale Stages Sites Sexes Seasonal models Age x Sites …. Matrix Models: a variety of structures

25 Matrix Models: seasonal models Spring t Summer Spring t+1 N’ 0 (t) N 1 (t) N’ 1 (t) N 1 (t+1) N 2 (t) N’ 2 (t) N 2 (t+1)

26 Spring t Summer Spring t+1 N(t) N’(t) N(t+1) M 1  M 2 Matrix Models: seasonal models f 1 f 2 M 1 = 1 0 0 1 s 0 0 0 M 2 = 0 s 1 s 2

27 s 0 f 1 s 0 f 2 M 2 M 1 = s 1 s 2 … the 2 x 2 original matrix Matrix Models: seasonal models f 1 f 2 M 1 = 1 0 0 1 s 0 0 0 M 2 = 0 s 1 s 2 M 2 M 1 = [ 2x3 matrix] x [3 x 2 matrix ] is a 2 x 2 matrix

28 Spring t Summer Spring t+1 N(t) N’(t) N(t+1) M 1  M 2 Matrix Models: post birth-pulse model N’(t+1) = M 1 M 2 N’(t) f 1 s 0 f 2 s 1 f 2 s 2 M 1 M 2 = s 0 0 0 0 s 1 s 2

29 FeatureRecurrence equationType of modelMath toolsKey reference Constant parameters Matrix models stricto sensu Linear Algebra Caswell (2001) Matrix population models Density- dependence Density- dependent matrix models, Discrete time logistic growth Nonlinear dynamics Caswell (2001) Matrix population models Random Environment Random Environment models Products of random matrices Tuljapurkar (1990) Population dynamics in variable environments Demographic stochasticity Branching Processes Applied Probability Gosselin, Lebreton (2001) The potential of branching processes... in Ferson & Burgman (Eds) Matrix Models: a variety of generalizations

30 N 1 (t+1) = s 0 (N 1 (t) + N 2 (t)) f 1 N 1 (t) + s 0 f 2 N 2 (t) N 2 (t+1) = s 1 N 1 (t) + s 2 N 2 (t) e.g. s 0 (N 1 (t) + N 2 (t)) = 0.2 * exp(-0.001 (N 1 (t) + N 2 (t)) ) Matrix Models: Density-dependence

31 Trajectory over time Asymptotic stabilization

32 Trajectory in the phase plane Asymptotically stable age structure

33 Regular (asymptotic) behaviour too Formal analysis feasible too Transcribes "Logistic growth" in a realistic (demographic) context Matrix Models: Density-dependence

34 Easily built from life cycle Easily generalized to consider relevant sources of variation in demographic parameters Easily generalized to any partition of individuals in mutually exclusive « classes » Discrete seasons, matrix products, pre/post birth-pulse Parameter estimation often drives choice of generalization (e.g. random environment) Amenable to formal study (not only asymptotics!) Matrix Models: Overview

35


Download ppt "Matrix Population Models for Wildlife Conservation and Management 27 February - 5 March 2016 Jean-Dominique LEBRETON Jim NICHOLS Madan OLI Jim HINES."

Similar presentations


Ads by Google