Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stabilization of Trajectories for Systems with Nonholonomic Constraints G. Walsh, D. Tilbury, S. Sastry, R. Murray, J. P. Laumond.

Similar presentations


Presentation on theme: "Stabilization of Trajectories for Systems with Nonholonomic Constraints G. Walsh, D. Tilbury, S. Sastry, R. Murray, J. P. Laumond."— Presentation transcript:

1 Stabilization of Trajectories for Systems with Nonholonomic Constraints G. Walsh, D. Tilbury, S. Sastry, R. Murray, J. P. Laumond

2 Presentation Topics l Problem of stabilizing a system with nonholonomic(nonintegrable) constraints  Non-smooth feedback laws  Time-varying feedback laws Brockett’s necessary conditions for stability No nonholonomic system can be asymptotically stabilized using smooth time-invariant state feedback

3 Problem formulation Given a nonholonomic system and a feasible trajectory to follow, find a control law to stabilize the system to the trajectory

4 Proposition (Stabilizing control law)

5 Proof of the Proposition

6 Example 1 - Heisenberg Control Algebra Trajectories investigated 1) origin x 0 (t)=[0 0 0] u 0 (t)=[0 0] 2) straight line x 0 (t)=[0 t 0] u 0 (t)=[0 1] System dynamics

7 Example 1 - Heisenberg Control Algebra

8 1) origin

9 Example 1 - Heisenberg Control Algebra 2) straight line

10 Example 1 - Heisenberg Control Algebra  Simulation result (  =1/6,  =1,  =0.5)

11 Example 2 - Hilare x3 (x1, x2) Desired trajectory: Perfect circle Nominal inputs: u 0 =[1 1]

12 Example 2 - Hilare => cannot directly compute the control law

13 Example 2 - Hilare  Numerical approach Initial values (t=0) Update laws

14 Example 2 - Hilare  Simulation result (  =0.1,  =1,  =3)

15  Simulation result Example 2 - Hilare


Download ppt "Stabilization of Trajectories for Systems with Nonholonomic Constraints G. Walsh, D. Tilbury, S. Sastry, R. Murray, J. P. Laumond."

Similar presentations


Ads by Google