Presentation is loading. Please wait.

Presentation is loading. Please wait.

© Effects Of Branching Characteristics And Copolymer Composition Distribution On Non-Isothermal Crystallization Kineics Of Metallocene LLDPEs Islam, MA;

Similar presentations


Presentation on theme: "© Effects Of Branching Characteristics And Copolymer Composition Distribution On Non-Isothermal Crystallization Kineics Of Metallocene LLDPEs Islam, MA;"— Presentation transcript:

1 © Effects Of Branching Characteristics And Copolymer Composition Distribution On Non-Isothermal Crystallization Kineics Of Metallocene LLDPEs Islam, MA; Hussein, IA; Atiqullah, M PERGAMON-ELSEVIER SCIENCE LTD, EUROPEAN POLYMER JOURNAL; pp: 599- 610; Vol: 43 King Fahd University of Petroleum & Minerals http://www.kfupm.edu.sa Summary The effects of branch content (BC) and copolymer composition distribution (CCD) on the non-isothermal crystallization kinetics of metallocene rn-LLDPEs were studied using modified Avrami analysis, modulated differential scanning calorimetry (MDSC), and Crystaf. Several m-LLDPEs and an m-HDPE - all having comparable M-w and PDI - were experimented. In addition, a ZN-LLDPE was used for comparison purposes. The branch content, unlike the used cooling rates (2-6 degrees C/min), significantly affected the crystallization behavior. Crystallization peak temperature, T-c(peak), decreased linearly with increasing BC. All the m-LLDPEs showed primary and secondary crystallizations. The secondary crystallization showed to be more pronounced at high BC. The primary crystallization Avrarmi parameter n for m-HDPE ranged between 3.72 and 4.50, indicating spherulitic crystal growth whereas that for the rn-LLDPEs, varied from 2.02 to 5.70. The ZN-LLDPE (having broader composition distribution) offered higher values of T-c(onset) and T-c(peak) than the m-LLDPEs with similar BC, M-w, and PDI. It, unlike the m-LLDPEs and m- HDPE, fairly agreed with the crystallization kinetic model proposed by Liu et al. The lamella thickness of the m-LLDPEs, L, calculated as per Gibbs-Thomson equation, showed to be in the range 2-16 nm, depending on BC and it decreased approximately Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa

2 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. © following the relationship: L (nm) = 15.0 e((-0.0498BC)). (c) 2006 Elsevier Ltd. All rights reserved. References: ADISSON E, 1992, POLYMER, V33, P4337 ALAMO R, 1984, J PHYS CHEM-US, V88, P6587 ALAMO RG, 1989, MACROMOLECULES, V22, P1273 ALAMO RG, 1993, MACROMOLECULES, V26, P5740 AVRAMI M, 1939, J CHEM PHYS, V7, P1103 AVRAMI M, 1940, J CHEM PHYS, V8, P212 AVRAMI M, 1941, J CHEM PHYS, V9, P177 BENSASON S, 1996, J POLYM SCI POL PHYS, V34, P1301 BUCHDAHL R, 1959, J POLYM SCI, V36, P215 CAZE C, 1997, POLYMER, V38, P497 CHAN TW, 1994, POLYM ENG SCI, V34, P461 CHEN KQ, 2004, MACROMOL MATER ENG, V289, P539 CHIU FC, 2002, J POLYM SCI POL PHYS, V40, P325 EVANS UR, 1945, T FARADAY SOC, V41, P365 FATOU JG, 1990, POLYMER, V31, P1685 FRANK FC, 1961, P ROY SOC LOND A MAT, V263, P323 FU Q, 2001, MACROMOL CHEM PHYSIC, V202, P927 GILL PS, 1993, J THERM ANAL, V40, P931 HAMEED T, 2002, POLYMER, V43, P6911 HAY JN, 1982, POLYMER, V23, P1380 HERRERO CR, 1994, POLYM J, V26, P786 HOSODA S, 1988, POLYM J, V20, P383 HUSSEIN IA, 2004, POLYM INT, V53, P1327, DOI 10.1002/pi.1528 JANIMAK JJ, 1999, THERMOCHIM ACTA, V332, P125 JAYAKANNAN M, 1999, J APPL POLYM SCI, V74, P59 JEZIORNY A, 1978, POLYMER, V19, P1142 JIAO CM, 2005, POLYM TEST, V24, P71, DOI 10.1016/polymertesting.2004.07.007 KAO YH, 1986, POLYMER, V27, P1669 KEATING MY, 1999, J MACROMOL SCI PHY B, V38, P379 LIU TX, 1997, POLYM ENG SCI, V37, P568 MADEREK E, 1983, COLLOID POLYM SCI, V261, P471 MANDELKERN L, 1979, J POLYM SCI POL PHYS, V17, P1913 MANDELKERN L, 1985, POLYM J, V17, P337 MCHUGH AJ, 1986, POLYMER, V27, P1585 MINICK J, 1995, J APPL POLYM SCI, V58, P1371 MONRABAL B, 1994, J APPL POLYM SCI, V52, P491 NAKAMURA K, 1973, J APPL POLYM SCI, V17, P1031 NORDMEIER E, 1990, MACROMOLECULES, V23, P1072 OKAZAKI I, 1997, MACROMOL RAPID COMM, V18, P313 Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa

3 41. 42. 43. 44. 45. 46. 47. © OZAWA T, 1971, POLYMER, V12, P150 PARASNIS NC, 1999, J THERM ANAL CALORIM, V55, P709 PHILLIPS PJ, 1986, POLYMER, V27, P1679 PICK LT, 2006, J APPL POLYM SCI, V101, P1963, DOI 10.1002/app.23709 QUI Z, 2003, POLYMER, V44, P5429 QUI ZB, 2003, POLYMER, V44, P3095 RABIEJ S, 2004, POLYMER, V45, P8761, DOI 10.1016/j.polymer.2004.10.045 48. RAZAVINOURI M, 2001, POLYMER, V42, P8621 49. READING M, 1993, J THERM ANAL, V40, P949 50. RIGHETTI MC, 1999, THERMOCHIM ACTA, V330, P131 51. RUN MT, 2005, THERMOCHIM ACTA, V429, P171, DOI 10.1016/j.tca.2005.03.007 52. RYCHLY J, 1993, THERMOCHIM ACTA, V215, P211 53. SAJKIEWICZ P, 2001, POLYMER, V42, P5365 54. SCHAWE JEK, 1995, THERMOCHIM ACTA, V260, P1 55. SHANKS RA, 2000, J THERM ANAL CALORIM, V59, P471 56. STARCK P, 1996, POLYM INT, V40, P111 57. STARCK P, 1999, POLYM ENG SCI, V39, P1444 58. STARCK P, 2002, EUR POLYM J, V38, P97 59. STROBL GR, 1983, POLYMER, V24, P1585 60. SUTTON SJ, 1996, POLYMER, V37, P5735 61. TENG HX, 2002, J POLYM SCI POL PHYS, V40, P2107, DOI 10.1002/olb.10273 62. TOBIN MC, 1974, J POLYM SCI PP, V12, P399 63. USAMI T, 1986, MACROMOLECULES, V19, P2722 64. VOIGTMARTIN IG, 1986, J POLYM SCI POL PHYS, V24, P1283 65. WAGNER J, 1999, POLYMER, V40, P4717 66. WAGNER J, 2001, POLYMER, V42, P8999 67. WANG C, 2001, POLYMER, V42, P1733 68. WUNDERLICH B, 1976, MACROMOLECULAR PHYSI, V2, P147 69. WUNDERLICH B, 1997, THERMAL CHARACTERIZA, V1 70. XU J, 1999, EUR POLYM J, V36, P685 71. YUAN ZH, 2000, POLYM INT, V49, P1377 72. ZHANG M, 2001, POLYMER, V42, P3067 73. ZIABICKI A, 1967, APPL POLYMER S, V6, P1 74. ZIABICKI A, 1974, COLLOID POLYM SCI, V6, P252 For pre-prints please write to: ihussein@kfupm.edu.sa Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa


Download ppt "© Effects Of Branching Characteristics And Copolymer Composition Distribution On Non-Isothermal Crystallization Kineics Of Metallocene LLDPEs Islam, MA;"

Similar presentations


Ads by Google