Download presentation
Presentation is loading. Please wait.
Published byLoren McKenzie Modified over 9 years ago
1
Concept Preliminary Estimations
2
02.12.2011 2 A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u)0.0250.020 Output energy (MeV/u)2.5(3.5) Beam current (mA)5.0 Transverse norm. emittance (cm mrad) 0.6 The output energy can be further increased, if necessary.
3
02.12.2011 3 A. Kolomiets R F Q LEBTMEBT I S D T L 0.020 MeV/u0.36 MeV/u2.50 MeV/u
4
02.12.2011 4 A. Kolomiets Frequency (MHz)75 (81.3) Average radius (mm)6. Aperture (mm)4.1 Vane curvature radius (mm)4.8 Voltage (kV)110.0 Maximum field at vane surface (kV/cm)238 Maximum field at vane surface (Kilpatrick units)1.8 Max. modulation Cell number199 Length (mm)3704 Output energy (MeV/u)0.31 Transverse norm. acceptance (cm mrad)2.1 Transverse phase advance (deg)38.5
5
02.12.2011 5 A. Kolomiets Simulation code TRACK was used for beam simulations The beam dynamics code TRACK: http://www.phy.anl.gov/atlas/TRACK.
6
02.12.2011 6 A. Kolomiets Simulation code TRACK was used for beam simulations The beam dynamics code TRACK: http://www.phy.anl.gov/atlas/TRACK.
7
02.12.2011 7 A. Kolomiets Transmission (%)95 Particle loss inside RFQ (%)0.3 Transverse emittance growth, rms1.05 Transverse emittance growth, 99%1.24 Longitudinal emitrtance, rms (keV/u nsec)5.55 Longitudinal emitrtance (keV/u nsec)13.4
8
02.12.2011 8 A. Kolomiets Input emittance (cm mrad) Transmission(%)
9
Sinusoidal modulation is most common but not most effective type of RFQ vane modulation. Trapezoidal modulation is more effective for long cells due to better field distribution that leads to higher transit time factor. This type of vane modulation was used in first RFQ. Sinusoidal modulation is preferable for initial RFQ part because it provides low field at electrode surface for short cells.
10
Z(cm) E z (arb. units) Red – trapezoidal Blue - sinusoidal O. K. Belyaev et al, Proceedings of the 20 th Linac Conference, Monterey, California, page 259 B. Mustapha #, A. A. Kolomiets and P.N. Ostroumov, Full 3D Modeling of radio-frequency quadrupole, LINAC 2010
11
02.12.2011 11 A. Kolomiets Modulation typeSinusoidalSinusoidal + trapezoidal Frequency (MHz)75.0 Average radius (mm)6. Aperture (mm)4.1 Vane curvature radius (mm)4.8 Voltage (kV)110.0 Max. modulation1.9 Cell number199142+40 Length (mm)38453888 Output energy (MeV/u)0.3090.359 Transverse norm. acceptance (cm mrad)2.1 Transverse phase advance (deg)38.5
12
40 %3 % Dipole component 4-rod RFQs in DESY, HMI, GSI, REX, DWIK, RAL, RIKEN,...
13
5 regular modules2 end modules - ITEP runs proton accelerators since 1961 - First RFQ built at ITEP in the 1970s - 7 RFQs built in ITEP in the last decades - ITEP/GSI collaboration runs since 1991 - ITEP/GSI currently run an INTAS project on heavy ion linac issues. New INTAS project including proton linac issues is under preparation - ITEP also collaborates in RFQs design, study and production in INR, CERN, LNL-INFN, ANL and MSU
14
02.12.2011 14 A. Kolomiets One Section of the Structure ParameterUnitValue Operating frequencyMHz81.5 Length of the RFQ vanesm6.258 Inner cavity diameterm0.564 Quality factor of the resonator 11000
15
02.12.2011 15 A. Kolomiets
16
R13 R3 48 16 g
17
Fields calculated at U = 1 V g = 20 mm E max = 77.6 V g = 24 mm E max = 67.0 V g = 32 mm E max = 53.9 V g = 36 mm E max = 49.6 V
18
Cavity 1Cavity 2Cavity 3 Voltage, kV460590690 Number of gaps101110 Length, mm71311041320 Gap length, mm253550 Output energy, MeV/u0.861.572.53 Maximum field at tube, kV/cm 280
19
Cold Model of Hybrid Structure
20
An innovative concept for acceleration of low-energy low-charge-state heavy-ion beams P.N. Ostroumov, A.A. Kolomiets, S. Sharma, N.E. Vinogradov, G.P. Zinkann Nuclear Instruments and Methods in Physics Research A 547 (2005) 259–269
21
02.12.2011 21 A. Kolomiets
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.