Download presentation
Presentation is loading. Please wait.
Published byArron Melton Modified over 8 years ago
1
Signals and Systems Lecture 3: Sinusoids
2
2 Today's lecture −Sinusoidal signals −Review of the Sine and Cosine Functions Examples −Basic Trigonometric Identities −Relation of Frequency to Period −Phase Shift to Time Shift Example Sampling and Plotting Sinusoids −Complex Exponentials and Phasors −Complex Number Representation −Addition of Complex Numbers Mathematical Addition Graphical Addition
3
3
4
4 Fig. 2-6: x(t) = 20cos(2π(40)t - 0.4π)
5
5 Sinusoidal signal : x(t) = 10cos(2π(440)t - 0.4π)
6
6 MATLAB Demo of Tuning Fork −% TuningFork −t = 0:.0001:.01; −y = 10*cos(2*pi*440*t-0.4*pi); −plot(t,y) −grid −pause; −t = 0:.0001:1; −y = 10*cos(2*pi*440*t-0.4*pi); −sound (y)
7
7 Basic Properties of sine and cosine functions Equivalence sin = cos( - /2) or cos = sin( + /2)y Periodicity cos( + 2 k) = cos , k = integer Evenness of cosine cos(- ) = cos Oddness of sine sin(- ) = - sin Zeros of sine sin ( k) = 0, k = integer Ones of cosine cos (2 k) = 1, k = integer Minus ones of cosine cos [2 (k + ½)) = -1, k = integer
8
8 Some basic trigonometric identities NumberEquation 1 sin 2 + cos 2 = 1 2 cos2 = cos 2 - sin 2 3 sin2 = 2 sin cos 4sin (α + β) = sinα cosβ + cosα sinβ 5cos (α + β) = cosα cosβ + sinα sinβ
9
9 Relation of Frequency to Period X(t)=A cos( 0 t+ ) x(t + T 0 ) = x(t) A cos( 0 (t + T 0 ) + )= A cos( 0 t+ ) cos( 0 t + 0 T 0 + )= cos( 0 t+ ) Since cosine function has a period of 2π 0 T 0 = 2π 2πf 0 T 0 = 2π T 0 = 1/ f 0
10
10 Fig 2-7: x(t) = 5cos(2πf o t) for different values of f o
11
11 Phase Shift and Time Shift x 0 (t - t 1 ) = A cos( 0 (t - t 1 ) = A cos ( 0 t + ) cos( 0 t - 0 t 1 )= cos( 0 t + ) t 1 = - / 0 = - / 2πf 0 Phase Shift is negative when time-shift is positive = - 2πf 0 t 1 = - 2πt 1 /T 0
12
12 Phase Shift and Time Shift
13
13 Phase Shift is Ambiguous
14
14 −X(t) =Acos(wt +Φ)
15
15 Sinusoid from a Plot
16
16 Represent following graph in form of X(t) =Acos(wt +Φ)
17
17 −A=6 −T =6 −f=1/6 −tm=2; −Φ=-wtm −Φ=-2*pi*f*tm −-2pi/3; − X(t)=6cos(pi/3 -2pi/3)
18
18 Sampling and Plotting Sinusoids
19
19 Effect of Sampling Period
20
20 Sample Spacing
21
21 Complex Numbers
22
22 Plot Complex Numbers
23
23 Complex Addition = Vector Addition
24
24 Polar Form
25
25 Polar versus Rectangular
26
26 Practice
27
27 Solution
28
28 Complex Conjugation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.