Download presentation
Presentation is loading. Please wait.
Published byColleen Chambers Modified over 8 years ago
2
Aim: What are the identities of sin (A ± B) and tan (A ±B)? Do Now: Write the cofunctions of the following 1. sin 30 2. sin A 3. sin (A + B) sin (A + B) = cos (90 – (A + B)) = cos (90 – A – B) = cos ((90 – A) – B) = cos (90 – A) cos B + sin (90 – A) sin B = sin A cos B + cos A sin B HW: p.499 # 8,14,16,18 p.502 # 8,10,20,22
3
Let’s guess what sin (A – B) is equivalent to? sin (A – B) = sin A cos B – cos A sinB In additional to identities of the sum and difference of two angles of sine and cosine, let’s take a look at other identities. sin (-A) = cos (90 –(-A)) = cos (90 + A) = cos 90 cos A – sin 90 sin A = 0(cos A) – 1(sin A) = –sin A cos (-A) = sin (90 – (-A)) = sin (90 + A) = sin 90 cos A + cos 90 sin A = 1(cos A) + 0(sin A) = cos A
4
Example: Find the exact value of sin 105° Example: Find the exact value of sin 65 cos 25 + cos 65 sin 25 sin(65 + 25) = sin 90° = 1
5
If A is a positive acute angle. B is a positive obtuse angle. Find the value of sin (A – B) sin (A – B) = sin A cos B – cos A sin B
7
Use the same way, we can prove that
8
Use (45 +120 ) = 165 to find the exact value of tan 165
9
Find the exact value of tan (A + B) and tan (A – B) A = 45 and B = 210 Find the exact value of tan 285 Find the exact value of tan 185
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.