Download presentation
Presentation is loading. Please wait.
Published byValerie Short Modified over 9 years ago
1
Experiences at FLASH and plans for SPARC Patrick O’Keeffe WUTA 2008, 8 th -10 th October Title Patrick O’Keeffe WUTA 2008, 8 th -10 th October
2
Characteristics of FLASH and Optical Laser Motivations and Scheme for Synchronisation Measurement of synchronisation by Cross-correlation Possible experiments at SPARC What I am going to talk about… Patrick O’Keeffe WUTA 2008, 8 th -10 th October
3
Who am I … o HASYLAB/DESY (Coordinator) o Dublin City University o CNRS / LURE Funded by the 5th Framework Programme of the European Commission Presently: Postdoc at CNR/IMIP in group of Lorenzo Avaldi EU RTD project “X-Ray FEL Pump-Probe” Grant No. HPRI-CT-1999-50009 Host (FEL) Synchronisation Measurements Michael Meyer Patrick O’Keeffe WUTA 2008, 8 th -10 th October
4
Wavelength of VUV radiation 15-50 nm, 150 J 250 m Layout at FLASH RF-gun Cs 2 Te - photocathode Nd:YLF pulse laser (2-20 ps; 262 nm) 10 10 electrons (1-3 nC) SASE undulator 6 modules (each 4.5 m) 0 = 27.3 mm; B 0 = 0.497 T Final energy Up to 1 GeV Experimental Hall FLASH SASE FEL Patrick O’Keeffe WUTA 2008, 8 th -10 th October
5
100 m 20 m/ unfocused 10 m intensity monitor (gas ionization) optical laser 100 m micro focus 20 m ~42 m to undulator Experimental Hall Patrick O’Keeffe WUTA 2008, 8 th -10 th October
6
Time Structure of the FEL Patrick O’Keeffe WUTA 2008, 8 th -10 th October
7
Wavelength: 790 nm... 830 nm Pulse duration: 100-120 fs pulse energy for single laser pulse: ~ 50 µJ (for 800 pulses in macropulse) up to 1 mJ (10 Hz pulse rep. rate) Laser parameters Optical Laser Courtesy: Ingo Will MBI (Berlin) Patrick O’Keeffe WUTA 2008, 8 th -10 th October
8
Motivations for Synchronisation Motivation: Pump-probe experiments Atomic / Molecular Physics (e.g. dynamics /nonlin. processes in VUV/XUV/X-ray) Solid state dynamics (e.g. magnetization dynamics, non-thermal melting) Plasma physics (probing high electron densities) Patrick O’Keeffe WUTA 2008, 8 th -10 th October
9
Difficulties to be surmounted for Synchronisation Classical same source set-up Photocathode laser, accelerator RF and pump-probe laser independently synchronised with master oscillator and far apart Thermal drifts Accuracy of the electronic synchronisation Phase jitter of the accelerator RF pulses → several 100 fs time jitter Independent sources: Patrick O’Keeffe WUTA 2008, 8 th -10 th October
10
Synchronisation Scheme...100 ms... systematic drifts within the pulse ~100 fs systematic drifts within the pulse ~100 fs changes from macropulse to macropulse ~ 300 fs changes from macropulse to macropulse ~ 300 fs...hours... l ongterm drifts > ps l ongterm drifts > ps Injector laser linac undulator pump - probe laser electron pulse compression Klystron main oscillator experiment Temperature stabilised Cables (300m) 1.3 GHz and 108 MHz Patrick O’Keeffe WUTA 2008, 8 th -10 th October
11
Jitter problem Measurement of relative arrival time between opt. laser pulse and FEL pulse and “sort” data points afterwards to correct jitter Patrick O’Keeffe WUTA 2008, 8 th -10 th October
12
bending magnet synchroscan streak camera slow feedback goal: drift < ps / h master clock from injector rack 300 m long cables linac FEL Ti:Sa laser 790 nm – 830 nm 150 fs electrons FEL to user opt. laser to user visible synchrotron radiation electrons Cross correlation Hamamatsu C5680 synchroscan res: 2 ps Cost: EUR 150 000 Optical laser + Synchrotron Radiation Courtesy: Stefan Düsterer (Hamburg) Patrick O’Keeffe WUTA 2008, 8 th -10 th October
13
Dipole radiation used for slow feedback Monitoring used to correct for thermal changes in the synchronisation cables Not sufficient resolution for true measure of jitter Patrick O’Keeffe WUTA 2008, 8 th -10 th October
14
Cross Correlation in ATI of rare gases Ar( 1 S 0 ) Ar(IP)15.76 eV h ir =1.55eV Sidebands (intensity prop. to intensity of IR) h xuv = 26 eV Patrick O’Keeffe WUTA 2008, 8 th -10 th October
15
Set-up used in the Hamburg Experiments Patrick O’Keeffe WUTA 2008, 8 th -10 th October
16
Transport of the Optical Pulse Patrick O’Keeffe WUTA 2008, 8 th -10 th October
17
First Experiment - 2005 M. Meyer, D. Cubaynes,P. O’Keeffe, H. Luna, P. Yeates, E. T. Kennedy, J. T. Costello, P. Orr, R. Taïeb, A. Maquet, S. Düsterer, P. Radcliffe, H. Redlin, A. Azima, E. Plönjes, and J. Feldhaus PHYSICAL REVIEW A 74, 011401R 2006 Cross correlation: FEL 32.2 nm (50fs – 40 J) Laser 523 nm (12ps – 250 J) Tcross = 12.0 +/- 0.4 ps Sideband Intensity = 2% of Main He line Patrick O’Keeffe WUTA 2008, 8 th -10 th October
18
Second Iteration! Cross correlation: FEL 13.8 and 25.5 nm (15-20 fs – 50 J) Laser 800 nm (120 fs – 20 J) Integrated Intensity of Sidebands = 20 % P. Radcliffe, et al., Appl. Phys. Lett. 90, 131108 (2007). Tcross = 600 +/- 50 fs (FWHM) Jitter = 590 fs (FWHM) 250 fs (r.m.s.) Patrick O’Keeffe WUTA 2008, 8 th -10 th October
19
Single shot cross-correlation in Xe Cross correlation: FEL 13.8 (15-20 fs – 50 J) – 89.9 eV Laser 800 nm (120 fs – 20 J) Comparison of the sideband intensity with theoretical analysis Temporal delay determined with a precision of +/- 50 fs P. Radcliffe, et al., Appl. Phys. Lett. 90, 131108 (2007). Patrick O’Keeffe WUTA 2008, 8 th -10 th October
20
SPARC vs FLASH SPARCFLASH Wavelength15 - 45 nm500 nm Power400 J150 J VisibleEUV Temporal Width2 ps10s fs Visible : temporal structure via autocorrelation Characteristics of SPARC similar to commercial ps YAG Patrick O’Keeffe WUTA 2008, 8 th -10 th October
21
Above Threshold Ionisation with SPARC McIlrath et al. Phys. Rev. A 35 (1987) 4611 10 15 photons/pulse @ 500nm 2 ps focussed to 50 m 10 13 W/cm 2 Patrick O’Keeffe WUTA 2008, 8 th -10 th October
22
IMIP Group experience SPARC Project CNR–IMIP, Poli MI, UniNa,UniPd Science 314(2006)443
23
Seeding of SPARC Two seeding schemes mentioned in TDR produce: 53.2 nm = 23.3 eV 32 nm = 38.7 eV Optically based autocorrelation methods become difficult Pulses on the 10s fs – 100fs scale Could use cross-correlation methods for characterisation of the temporal structure of the FEL Patrick O’Keeffe WUTA 2008, 8 th -10 th October
24
Dynamics of Excited Ionic States State of the art of gas phase pump-probe: Soft X-ray–Driven Femtosecond Molecular Dynamics Murnane and Kapteyn and coworkers: Science 317, 1374 (2007); Photons /pulse HHGSeeded SPARC ~10 6 10 6 - 10 7 Patrick O’Keeffe WUTA 2008, 8 th -10 th October
25
Acknowledgements Members of the “X-Ray FEL Pump-Probe” EU RTD project Michael Meyer Lorenzo Avaldi, Paola Bolognesi, Roberto Flammini Patrick O’Keeffe WUTA 2008, 8 th -10 th October
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.