Download presentation
Presentation is loading. Please wait.
Published byAgnes Watson Modified over 9 years ago
1
Empirical Molecular Dynamics Simulations to Analyse Holographically Determined Mean Inner Potentials Kurt Scheerschmidt, Max Planck Institute of Microstructure Physics, Halle/Saale, Weinberg 2, Germany, schee@mpi-halle.de, http://mpi-halle.deschee@mpi-halle.dehttp://mpi-halle.de x y Si substrate Ge- Si CTEM: - two dimensional projection - dynamical diffraction complexity - strains and composition gradients - mean inner potential MIP GOAL: Determination of mean inner potentials (MIP) to analyze 3D (Si,Ge) nanostructures Applicability electronic / photonic devices Physical properties (confinement) Composition, structure, strain, morphology of (Si,Ge) nanostructures V0V0 Vacuum Phase shift t V 0 : Mean inner Coulomb potential t: Object thickness Object e iAt = C -1 {e i t }C EXPERIMENTAL: Electron Holography Electron hologramAmplitudeUnwrapped phase Si Ion milling Amplified phase image of (Si,Ge) QDs 10 amplified phase image Unwrapped phase profile Electron holography of (Si,Ge) islands Hologram amplitude phase unwrapped phase + = j i j i k +...... + j i k l dihedral,,,, torsion angles j i j i k distance Molecular Dynamics using Bond Order Potentials embedded bonds instead atoms – two-center orthogonal TB density matrix instead diagonalisation E tot = E rep + E prom + E band (k) empirical s 2 p 2 ->sp 3 S H i a,j b Q i a,j b hopping integrals BOmatrix Pettifor-Aoki = [E-H] -1 Slater-Koster ss s, sp s, pp p... Lanczos recursion & electronic hopping in closed loops SiGeQD MDrelaxed & simulated exit wave Amp Phase 21 a b c d Si.95Ge.05Si.75Ge.25Si.5Ge.5Si.25Ge.75Si.05Ge.95 potential scan potential average ab cd Si.5Ge.5 background histogram (counts/eV) & linescans (Vo in eV) -4eV MD using BOP : structure relaxations phononmodes via frozen lattice charge density Mean inner potential (MIP in eV) of (Si,Ge) compounds as function of the Ge concentration x for different scattering models: SCFfit = isolated atom approximation (Doyle-Turner) with atomic form factor of Si (5.828Å) and Ge (7.378Å). - DFTfit = linear fitted DFT data of Kruse & Schowalter UM106(2006)105, i.e. Si (12.57 V) and Ge (14.67 V). perfect/relaxed = scan of the bond order potential before (perfect) and after (relaxed, NpT conditions) annealing up to 400 K using classical molecular dynamics for vacuum super cells (small=sSC/extended=eSC) of 7nm/23nm box length (13x13x13, 10478atoms/ 41x41x41, 312666 atoms) half filled with (Si,Ge) of different Ge concentration x. Total energies including all attraction terms, i.e. -, -bonds, promotion, and negative repulsive energy. Static relaxation: i=sSC,NVE, ii=sSC,NpT, iii=eSC,NpT, iv=eSC,NVE final: v=eSC,NVE, vi=sSC,NVE, xi=sSC,weak-p, xii=sSC,weak-T 400K-dynamics: vii=eSC,NVE, viii=eSC,NpT, ix=sSC,NVE, x=sSC,NpT Sample A: h~ 66 nm Sample B: h ~ 130 nm Analysis via STEM & CTEM MD - BOP scattering potential V(r) DFT (in Ha) V(r) BOP (in eV) REFERENCES: C.L.Zheng, Thesis, HU-Berlin, 2010; K.Scheerschmidt, et.al., IMC17, Rio de Janeiro 2010, I8.4; C.L.Zheng, UM 2012, in prep.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.