Presentation is loading. Please wait.

Presentation is loading. Please wait.

3-D ATTENUATION STRUCTURE FROM THE INVERSION OF MICROEARTHQUAKE PULSE WIDTH DATA: Inferences on the thermal state of the Campi Flegrei Caldera Aldo Zollo.

Similar presentations


Presentation on theme: "3-D ATTENUATION STRUCTURE FROM THE INVERSION OF MICROEARTHQUAKE PULSE WIDTH DATA: Inferences on the thermal state of the Campi Flegrei Caldera Aldo Zollo."— Presentation transcript:

1 3-D ATTENUATION STRUCTURE FROM THE INVERSION OF MICROEARTHQUAKE PULSE WIDTH DATA: Inferences on the thermal state of the Campi Flegrei Caldera Aldo Zollo (1) and Salvatore de Lorenzo (2) (1) Dipartimento di Scienze Fisiche, Università di Napoli (2) Istituto di Geologia e Geofisica, Università di Bari

2 Research objectives 3-D attenuation structure of Campi Flegrei caldera from microearthquake data Relation between Q and T at macroscopic scale Present thermal state of the volcano

3 Contents C. Flegrei caldera: volcan. & geophys. setting Source and attenuation model The inversion method Resolution tests Results 1: source parameters Results 2: Qp images T vs Qp relationship Qp-inferred temperature field Conclusions Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

4 Volcanological Setting Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

5 Geophysical setting Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

6 Unrest phenomena 1970 1982 meters Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

7 Local earthquake tomography: 3-D velocity model (Aster & Meyer,1988) Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

8 Source model : Sato & Hirasawa(1973) circular crack constant Vr, stress drop Abrupt stop Attenuation model : Azimi et al.(1968) near-constant Q Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions Far-field velocity waveform U(t)=S SH (t) * Q AZ (t)

9 Rise-time & pulse width Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

10 Rise-time Pulse width  o, source radius c, rupture velocity , take-off angle  o, rise-time for Q=   T o, pulse width for Q=  T, travel time Numerically-built relationships between rise-time, pulse width and model parameters Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

11 Numerically-built relationships between rise-time, pulse width and model parameters Rise-time Pulse width Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

12 Inversion scheme Model parameters: source radii, fault angles, Q in each block of a 3-D medium Data: rise-times, pulse widths from M eqs recorded by N stations Non-linear Method: search for a minimum of a cost function by Downhill Simplex Strategy: iterative loop on source and Q parameters Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

13 The acquisition lay-out Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

14 Estimate of source parameters 1 Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

15 Estimate of source parameters 2 Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

16 Estimate of attenuation parameters: chess-board test Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

17 Estimate of attenuation parameters: “fixed-geometry” test 1 Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

18 Estimate of attenuation parameters: “fixed-geometry” test 2 Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

19 Example of P-pulse recordings Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

20 Pulse width & rise-time measurements Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

21 Residuals vs travel time Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

22 Estimates of Source radii and stress drops Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions 1E-12E-1

23 Estimates of fault angles: Comparison with fault plane solutions Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

24 P-wave attenuation spatial distribution 0<Z<1 1<Z<2 2<Z<3 Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

25 Comparison between velocity and attenuation images Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

26 Geothermal gradient: high pass filtered map Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

27 Temperature measurements in boreholes Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

28 Local calibration of T(Qp) relationship Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

29 Qp-inferred temperature field Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

30 3-D Heat conduction modeling of Qp-inferred temperature field: A simple two-blocks model Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

31 3-D Heat conduction modeling of Qp-inferred temperature field: Results Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

32 Low stress drops (0.1-1 bar ) Variable fault geometries from pulse width (only few events), consistent with fault plane solutions from P-polarities Local calibration of T(Qp) relationship Shallow (0-1 km) Qp-anomaly pattern correlates with areas of intense hot fluid circulation Deep (>2 km) low Qp- high T anomaly, correlates with low Vs. In this area the most recent eruptive activity and present hydrothermalism are concentrated A magma chamber top at 4-5 km depth is consistent with the Qp-inferred temperature field, assuming a simple model of heat conduction cooling of molten bodies. Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

33 T HE E ND

34 Volcanological Setting Geo Setting Model The inversion method Synthetic tests Source parameters Qp images T vs Qp relation Thermal field Conclusions

35

36

37

38

39

40

41

42


Download ppt "3-D ATTENUATION STRUCTURE FROM THE INVERSION OF MICROEARTHQUAKE PULSE WIDTH DATA: Inferences on the thermal state of the Campi Flegrei Caldera Aldo Zollo."

Similar presentations


Ads by Google