Download presentation
Presentation is loading. Please wait.
Published byCecilia Eleanor Holland Modified over 8 years ago
1
Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2012 Memory Core: Part 2
2
Today DRAM Leakage Multiport SRAM Tristate Drivers (time permitting) Penn ESE370 Fall2012 -- DeHon 2
3
Memory Bank Penn ESE370 Fall2012 -- DeHon 3
4
DRAM Penn ESE370 Fall2012 -- DeHon 4
5
1T 1C DRAM Simplest case – Memory is capacitor –Feature of DRAM process is ability to make large capacitor compactly Penn ESE370 Fall2012 -- DeHon 5
6
1T DRAM What happens when read this cell? Penn ESE370 Fall2012 -- DeHon 6 Cbit << Cbl
7
1T DRAM On read, charge sharing –V BL = (C bit /C BL )V store Small swing on bit line –Must be able to detect –Means want large C bit limit bits/bitline so V BL large enough Cell always depleted on read –Must be rewritten Penn ESE370 Fall2012 -- DeHon 7
8
Different? What else is different about this? Penn ESE370 Fall2012 -- DeHon 8
9
Dynamic Node Not driven Depend on charge staying on the node for a period time Sets an upper bound on how long can expect data to stay Penn ESE370 Fall2012 -- DeHon 9
10
10 Dynamic RAM Takes sharing idea one step further Share refresh/restoration logic as well Only left with access transistor and capacitor
11
3T DRAM Penn ESE370 Fall2012 -- DeHon 11
12
3T DRAM How does this work? –Write? –Read? Penn ESE370 Fall2012 -- DeHon 12
13
3T DRAM Correct operation not sensitive to sizing Does not deplete cell on read No charge sharing with stored state All NMOS (single well) Prechage ReadData Must use V dd +V TN on W to write full voltage Penn ESE370 Fall2012 -- DeHon 13
14
Penn ESE370 Fall2012 -- DeHon 14 Some Numbers (memory) Register as stand-alone element (14T) 4K 2 Static RAM cell (6T) 1K 2 –SRAM Memory (single ported) Dynamic RAM cell (DRAM process) 100 2 Dynamic RAM cell (SRAM process) 300 2
15
Energy Penn ESE370 Fall2012 -- DeHon 15
16
Single Port Memory What fraction is involved in a read/write? What are most cells doing on a cycle? Reads are slow –Cycles long lots of time to leak Penn ESE370 Fall2012 -- DeHon 16
17
ITRS 2009 45nm Penn ESE370 Fall2012 -- DeHon 17 High Performance Low Power I sd,leak 100nA/ m50pA/ m I sd,sat 1200 A/ m560 A/ m C g,total 1fF/ m0.91fF/ m V th 285mV585mV C 0 = 0.045 m × C g,total
18
High Power Process V=1V d=1000 =0.5 W access =W buf =2 Full swing for simplicity C sc = 0 –(just for simplicity, typically <C load ) BL: C load =1000C 0 ≈ 45 fF = 45×10 -15 F W N = 2 I leak = 9×10 -9 A P= (45×10 -15 ) freq + 1000×9×10 -9 W Penn ESE370 Fall2012 -- DeHon 18
19
Relative Power P= (45×10 -15 ) freq + 1000×9×10 -9 W P= (4.5×10 -14 ) freq + 9×10 -6 W Crossover freq<200MHz How partial swing on bit line change? Reduce dynamic energy Increase percentage in leakage energy Reduce crossover frequency Penn ESE370 Fall2012 -- DeHon 19
20
Consequence Leakage energy can dominate in large memories Care about low operating (or stand-by) power Use process or transistors with high V th –Reduce leakage at expense of speed Penn ESE370 Fall2012 -- DeHon 20
21
Multiport RAM Skip to admin Penn ESE370 Fall2012 -- DeHon 21
22
Mulitport Perform multiple operations simultaneously –E.g. Processor register file R3 R1+R2 Requires two reads and one write Penn ESE370 Fall2012 -- DeHon 22
23
Simple Idea Add access transistors to 5T Penn ESE370 Fall2012 -- DeHon 23
24
Watch? What do we need to be careful about? Penn ESE370 Fall2012 -- DeHon 24
25
Adding Write Port Penn ESE370 Fall2012 -- DeHon 25
26
Write Port What options does this raise? Penn ESE370 Fall2012 -- DeHon 26
27
Opportunity Asymmetric cell size Separate sizing constraints –Weak drive into write port (W restore ) –Strong drive into read port (W buf ) Penn ESE370 Fall2012 -- DeHon 27
28
Isolate BL form Mem Penn ESE370 Fall2012 -- DeHon 28 Larger, but more robust Essential for large # of read ports Precharge ReadData High
29
Multiple Write Ports Penn ESE370 Fall2012 -- DeHon 29
30
Bus Drivers Penn ESE370 Fall2012 -- DeHon 30
31
Memory Bank Penn ESE370 Fall2012 -- DeHon 31
32
Tristate Driver Penn ESE370 Fall2012 -- DeHon 32
33
Tri-State Drivers Penn ESE370 Fall2012 -- DeHon 33
34
Memory Bank Penn ESE370 Fall2012 -- DeHon 34
35
Idea Memory can be compact Rich design space Demands careful sizing Penn ESE370 Fall2012 -- DeHon 35
36
Admin HW5 and Proj1 graded and on blackboard –Definitely look at what we expected on project report HW6 Due tomorrow Project 2 out –Milestone due Tuesday Penn ESE370 Fall2012 -- DeHon 36
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.