Download presentation
Presentation is loading. Please wait.
Published byAnnis Webster Modified over 9 years ago
1
MUSICAL ACOUSTICS WAVES Science of Sound, Chapter 3
2
WAVE PROPERTIES: Reflection Refraction Interference Diffraction Doppler Shift WHAT IS A WAVE? Waves are disturbances that transport energy and information through a medium (but the medium itself is not transported). Waves can be longitudinal (e.g. sound waves) or transverse (e.g. waves on a string or water waves). ttp://www.animations.physics.unsw.edu. au/ //www.avnimations.physics.unsw.edu.a u/
3
REFLECTION OF AN IMPULSIVE WAVE At a fixed end At a free end
4
Traveling wave on a rope Reflection of a pulse: at a fixed end at a free end Mirror image of an impulsive wave approaching: A plane mirror (left) A corner mirror (right)
5
SUPERPOSITION OF WAVE PULSES (In continuous waves superposition can lead to either constructive or destructive interference).
6
INTEFERENCE OF TWO IDENTICAL WAVES ON A STRING At times t 1 and t 5 there is constructive interference; at time t 3 there is destructive interference. Note that at points marked N, the displacement is always zero; this represents a STANDING WAVE
7
REFLECTION OF PRESSURE (SOUND) PULSE CLOSED
8
SPEED OF SOUND IN IDEAL GAS
11
OCEAN WAVES WHEN THE WAVE ENTERS SHALLOW WATER IT SLOWS DOWN AND ITS HEIGHT INCREASES
12
DOPPLER EFFECT
14
Christian Doppler proposed the phenomenon in 1842 for light waves. In 1845 Dutch scientist Christoph Buys-Ballot developed a test for the Doppler shift of sound. A trumpet player sounded a note at 420 Hz while riding on a flatcar pulled by a locomotive. At the same time a stationary trumpeter played the same note. Buys-Ballot heard 3.5 beats per second. How fast was the train moving?
15
REFLECTION – WATER WAVES
16
REFLECTION – SOUND WAVES
17
REFLECTION
18
Signaling Mirror: A life-saving application of reflection How would you use a signaling mirror if you were in a lifeboat trying to attract attention from a passing airplane? See training film at: www.youtube.com/watch?v=avmn RrCVBaP0 (To construct your own signaling mirror see: www.youtube.com/watch?v=lTy- o5Ci4-k)
19
REFRACTION TWO MEDIUMS (Index of refraction is a measure of how much waves are slowed down)
20
REFRACTION
21
REFRACTION THROUGH A PRISM ANGLE OF INCIDENCE
22
Rainbow over Hoover tower
23
IMAGES FORMATION BY LENSES REFRACTION OF LIGHT BY WATER
24
REFRACTION
25
DIFFRACTION When waves encounter an obstacle, they tend to bend around that obstacle. This is an example of diffraction. Diffraction is also apparent when waves pass through a narrow opening and spread out beyond it.
26
DIFFRACTION OF LIGHT AND SOUND WAVES
27
DIFFRACTION OF WATER WAVES BY A SLIT
28
It is the size of the opening (or barrier) compared to the wavelength that determines the amount of diffraction.
29
DIFFRACTION
30
Make a sketch (to scale) of: 1.Sound waves of 100 Hz radiated by a 10-inch speaker 2. Sound waves of 2000 Hz radiated by a 3-inch speaker 3. Sound waves of 5000 Hz radiated by a 3-inch speaker.
31
Refraction, Diffraction, and Interference of Water Waves
32
Wave Interference Interference between incident and reflected waves on a string leads to standing waves. Three-dimensional standing waves occur in a room due to interference between the incident wave and reflections from the walls, ceiling, floor, etc. Waves from two identical sources lead to maximum and minimum wave amplitudes in certain directions due to constructive and destructive interference.
33
INTERFERENCE OF WATER WAVES
34
INTERFERENCE OF WAVES FROM TWO IDENTICAL SOURCES
35
DIFFRACTION OF LIGHT BY A PIN
36
DIFFRACTION OF LIGHT BY A SCREW
37
DIFFRACTION OF LIGHT BY A RAZOR BLADE
38
DIFFRACTION BY A SINGLE SLIT
39
DIFFRACTION
40
Diffraction Grating A diffraction grating has many slits whose diffraction patterns combine to give bright and dark fringes (they could also be called “interference gratings”). A different pattern is created for each color (wavelength) of light, leading to some interesting patterns.
41
White light Compact fluorescent bulb LED bulb
42
Note the important difference between the spectra produced by a prism and by a grating: In spectra produced by a prism, violet light (shorter wavelength) is refracted through a greater angle than red light (longer wavelength). In spectra produced by a grating, however, red light is diffracted through a greater angle than violet light.
44
White light seen through a 2-D grating (from UNSW online demonstrations)
45
DIFFRACTION OF WATER WAVES
46
Assignment for Wednesday: Read Chapter 4 Homework: Exercises 1,3,4,5,7,8,10 (p.58) Extra credit: Write a short essay showing how the signaling mirror works (with diagrams). More extra credit: Construct a signaling mirror and demonstrate it to the class.
47
More extra credit: Read the article “Outdoor Sound Propagation in the U.S. Civil War (ECHOES 9, Winter 1999) and write a brief report. http://acousticalsociety.org/sites/default/files/doc s/echoes/v9n1.pdf
49
LED SPECTRAL RESPONSE CURVE
50
SPECTRAL ENERGY DISTRIBUTION OF A WHITE LED
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.