Download presentation
Presentation is loading. Please wait.
Published byAsher Bryant Modified over 9 years ago
1
Megan Johnson Alex Gaskins Thomas Rush Hassan Ali
2
∙ Hassan’s Triangle: ∙ 60 inches (eye height) ∙ 28 feet=336 inches (base) Tan x= opposite/adjacent Tan30=x/336 (336)Tan30=x x≈193.99 inches h= x+ eye height ≈193.99+60 h≈253.99 inches Long leg=336 Short leg=x Short leg=long leg/√3 x=336/√3 =336√3/3 =112√3 h= x + eye height =112√3+60 ≈193.99+60 h≈253.99 Eye height Base Long leg Short leg 112√3 336” 60”
3
Megan’s triangle: 63 inches (eye height) 14 feet=168 inches (base) Tan x= opposite/adjacent Tan45=x/168 (168)Tan45=x X= 168 inches h= x+ eye height = 168+63 h= 231 inches In a 45-45-90 triangle, the two legs are congruent. leg ₁ =leg ₂ 168=168 H= leg + eye height = 168 + 63 = 231 inches leg ₁ leg ₂ 168” base 168” 168” eye height
4
Thomas’s triangle: 65 inches (eye height) 7 feet= 84 inches (base) Tan x= opposite/adjacent Tan60=x/84 (84)Tan60=x X≈ 145.49 inches h= x+ eye height ≈145.49+65 ≈210.49 inches Short leg=84 Long leg = x x= 84 ∙√3 x= 84√3 h= x + eye height =84√3+65 ≈145.49+65 ≈210.49 inches 145.49” Long leg Short leg 84” 65” Eye height Base 84”
5
59” Alex’s triangle: 59 inches (eye height) 78 feet = 936 inches Tan x= opposite/adjacent Tan10=x/936 (936)Tan10=x x≈165.04 inches h= x+ eye height ≈165.04+59 h≈224.04 inches 936” Base 936” 165.04”
6
We used the Trigonometry to find the missing side. We then used the Special Right Triangle Formulas to find the third and final side to the triangle. Average Height Calculated 229.87 inches
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.