Presentation is loading. Please wait.

Presentation is loading. Please wait.

Megan Johnson Alex Gaskins Thomas Rush Hassan Ali.

Similar presentations


Presentation on theme: "Megan Johnson Alex Gaskins Thomas Rush Hassan Ali."— Presentation transcript:

1 Megan Johnson Alex Gaskins Thomas Rush Hassan Ali

2 ∙ Hassan’s Triangle: ∙ 60 inches (eye height) ∙ 28 feet=336 inches (base) Tan x= opposite/adjacent Tan30=x/336 (336)Tan30=x x≈193.99 inches h= x+ eye height ≈193.99+60 h≈253.99 inches Long leg=336 Short leg=x Short leg=long leg/√3 x=336/√3 =336√3/3 =112√3 h= x + eye height =112√3+60 ≈193.99+60 h≈253.99 Eye height Base Long leg Short leg 112√3 336” 60”

3 Megan’s triangle: 63 inches (eye height) 14 feet=168 inches (base) Tan x= opposite/adjacent Tan45=x/168 (168)Tan45=x X= 168 inches h= x+ eye height = 168+63 h= 231 inches In a 45-45-90 triangle, the two legs are congruent. leg ₁ =leg ₂ 168=168 H= leg + eye height = 168 + 63 = 231 inches leg ₁ leg ₂ 168” base 168” 168” eye height

4 Thomas’s triangle: 65 inches (eye height) 7 feet= 84 inches (base) Tan x= opposite/adjacent Tan60=x/84 (84)Tan60=x X≈ 145.49 inches h= x+ eye height ≈145.49+65 ≈210.49 inches Short leg=84 Long leg = x x= 84 ∙√3 x= 84√3 h= x + eye height =84√3+65 ≈145.49+65 ≈210.49 inches 145.49” Long leg Short leg 84” 65” Eye height Base 84”

5 59” Alex’s triangle: 59 inches (eye height) 78 feet = 936 inches Tan x= opposite/adjacent Tan10=x/936 (936)Tan10=x x≈165.04 inches h= x+ eye height ≈165.04+59 h≈224.04 inches 936” Base 936” 165.04”

6  We used the Trigonometry to find the missing side.  We then used the Special Right Triangle Formulas to find the third and final side to the triangle.  Average Height Calculated 229.87 inches


Download ppt "Megan Johnson Alex Gaskins Thomas Rush Hassan Ali."

Similar presentations


Ads by Google