Download presentation
Presentation is loading. Please wait.
Published byHarriet Rice Modified over 9 years ago
1
Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 20, 2013 MOS Transistor Operating Regions Part 1
2
Today MOS Transistor Topology Threshold Operating Regions –Resistive –Saturation –Velocity Saturation –Subthreshold Penn ESE370 Fall2013 -- DeHon 2
3
Last Time Penn ESE370 Fall2013 -- DeHon 3
4
Depletion region excess carriers depleted Penn ESE370 Fall2013 -- DeHon 4 Refinement
5
Body Contact Fourth terminal Also effects fields Usually common across transistors Penn ESE370 Fall2013 -- DeHon 5
6
No Field V GS =0, V DS =0 Penn ESE370 Fall2013 -- DeHon 6
7
Apply V GS >0 Accumulate negative charge –Repel holes (fill holes) Penn ESE370 Fall2013 -- DeHon 7 + + + + - - - - - - - - -
8
Channel Evolution Increasing Vgs Penn ESE370 Fall2013 -- DeHon 8
9
Gate Capacitance Penn ESE370 Fall2013 -- DeHon 9 Changes based on operating region.
10
Inversion Surface builds electrons –Inverts to n-type –Draws electrons from n + source Penn ESE370 Fall2013 -- DeHon 10
11
Threshold Voltage where strong inversion occurs threshold voltage –Around 2 ϕ F –Engineer by controlling doping (N A ) Penn ESE370 Fall2013 -- DeHon 11
12
Resistive Region V GS >V T, V DS small Penn ESE370 Fall2013 -- DeHon 12
13
Resistive Region V GS >V T, V DS small V GS fixed looks like resistor –Current linear in V DS Penn ESE370 Fall2013 -- DeHon 13
14
Linear (Resistive) Region Penn ESE370 Fall2013 -- DeHon 14
15
Penn ESE370 Fall2013 -- DeHon 15 Blue curve marks transition from Linear to Saturation Linear (Resistive) Region
16
Penn ESE370 Fall2013 -- DeHon 16 Dimensions Channel Length (L) Channel Width (W) Oxide Thickness (T ox )
17
Preclass Ids for identical transistors in parallel? Penn ESE370 Fall2013 -- DeHon 17
18
Preclass Ids for identical transistors in series? –(Vds small) Penn ESE370 Fall2013 -- DeHon 18
19
Transistor Strength (W/L) Penn ESE370 Fall2013 -- DeHon 19 S D
20
Transistor Strength (W/L) Shape dependence match Resistance intuition –Wider = parallel resistors decrease R –Longer = series resistors increase R Penn ESE370 Fall2013 -- DeHon 20 S D
21
L drawn vs. L effective Doping not perfectly straight Spreads under gate Effective L smaller than draw gate width Penn ESE370 Fall2013 -- DeHon 21
22
Channel Voltage Voltage varies along channel Think of channel as resistor Penn ESE370 Fall2013 -- DeHon 22
23
Preclass 2 What is voltage in the middle of a resistive medium? –(halfway between terminals) Penn ESE370 Fall2013 -- DeHon 23
24
Voltage in Channel Think of channel as resistive medium –Length = L –Area = Width * Depth(inversion) What is voltage in the middle of the channel? –L/2 from S and D ? Penn ESE370 Fall2013 -- DeHon 24
25
Channel Voltage Voltage varies along channel If think of channel as resistor –Serves as a voltage divider between V S and V D Penn ESE370 Fall2013 -- DeHon 25
26
Impact on Inversion What happens when –Vgs=2Vth ? –Vds=2Vth? What is Vmiddle-Vs? Penn ESE370 Fall2013 -- DeHon 26
27
Channel Field When voltage gap V G -V x drops below V TH, drops out of inversion –Occurs when: V GS -V DS < V TH –What does this mean about conduction? Penn ESE370 Fall2013 -- DeHon 27
28
Preclass 3 What is Vm? Penn ESE370 Fall2013 -- DeHon 28
29
Channel Field When voltage gap V G -V x drops below V T, drops out of inversion –Occurs when: V GS -V DS < V T –What is voltage at Vmiddle if conduction stops? –What does that mean about conduction? Penn ESE370 Fall2013 -- DeHon 29
30
Contradiction? Vg-Vx < Vt cutoff (no current) No current Vg-Vx=Vgs Vg-Vx=Vgs > Vt current flows Penn ESE370 Fall2013 -- DeHon 30
31
Way out? Vg-Vx < Vt cutoff (no current) No current Vg-Vx=Vgs Vg-Vx=Vgs > Vt current flows Penn ESE370 Fall2013 -- DeHon 31 Act like Vds at Vgs-Vt
32
Channel Field When voltage gap V G -V x drops below V T, drops out of inversion –Occurs when: V GS -V DS < V T –Channel is “pinched off” Penn ESE370 Fall2013 -- DeHon 32
33
Channel Field When voltage gap V G -V x drops below V T, drops out of inversion –Occurs when: V GS -V DS < V T –Channel is “pinched off” –Current will flow, but cannot increase any further Penn ESE370 Fall2013 -- DeHon 33
34
Pinch Off When voltage drops below V T, drops out of inversion –Occurs when: V GS -V DS < V T Conclusion: –current cannot increase with V DS once V DS > V GS -V T Penn ESE370 Fall2013 -- DeHon 34
35
Saturation In saturation, V DS-effective =V x = V GS -V T Becomes: Penn ESE370 Fall2013 -- DeHon 35
36
Saturation V DS > V GS -V T Penn ESE370 Fall2013 -- DeHon 36
37
Penn ESE370 Fall2013 -- DeHon 37 Blue curve marks transition from Linear to Saturation Saturation Region
38
Class Ended Here Penn ESE370 Fall2013 -- DeHon 38
39
Switching Operation Consider Inverter Start with in=0V Output voltage? What does first-order model say about NFET? Penn ESE370 Fall2013 -- DeHon 39
40
Switching Operation Input rises from 0V When cross into new region? What region cross into? Ids Current? What happens to Ids as V continues to rise? What is happening to Vout? Penn ESE370 Fall2013 -- DeHon 40
41
Switching Operation Input at Vdd When NFET change operating regions? Which region move into? What’s happening to Vout? What region when settles to static voltage? Penn ESE370 Fall2013 -- DeHon 41
42
Penn ESE370 Fall2013 -- DeHon 42 Retrace Transition
43
Approach Identify Region Drives governing equations Use to understand operation Penn ESE370 Fall2013 -- DeHon 43
44
Big Idea 3 Regions of operation for MOSFET –Subthreshold –Resistive –Saturation Penn ESE370 Fall2013 -- DeHon 44
45
Admin Text 3.3.2 – highly recommend read –Second half on Friday HW4 out –Get started over weekend Penn ESE370 Fall2013 -- DeHon 45
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.