Download presentation
Presentation is loading. Please wait.
Published byMarsha Brooks Modified over 9 years ago
2
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark
3
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 What have we learned so far?
4
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Flyabout + SDSS movie
5
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Brief History of the Universe 400
6
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy To 0th order: Cosmological functions (z), G(z,k), P s (k), P t (k) H(z) 400
7
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Cosmological functions H(z) P(k,z) To 1st order: 400
8
SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, 241302 H = dlna/dt, H 2 Assumes k=0 Vanilla rules OK!
9
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Measuring clustering (That’s where the neutrino signal is)
10
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496
11
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Boom zoom z = 1000
12
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Boom zoom z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001
13
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Boom zoom z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001
14
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Boom zoom Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001 z = 0
15
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 1par movies Ly LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/0207047 + updates CMB
16
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 000619 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)
17
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 1par movies Ly LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/0207047 + updates CMB
18
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Measuring cosmological parameters
19
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006
20
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Neutrinos (Øisten Elgarøy will give much more detail on this on Thursday)
21
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Boom zoom How neutrinos suppress cosmic fluctuation growth If all the matter can cluster: a Net growth until today: a today /a primordial ≈ 4700 p ≈ 4700 e -4f Power suppression: P(k)/P(k) primordial ≈ e -8f f ≈ ∑ m i /94.4 eV dm ≈ ∑ m i /12 eV, So 1 eV cuts power in half. If only a fraction * can cluster: a p, where p=[(1+24 * )-1]/4≈ * 3/5 ≈ (1-f ) 3/5 (Bond, Efstathiou & Silk 1980) Distinguish neutrinos from dark energy by time and scale dependence.
22
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Cmbgg OmOl
23
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Cmbgg OmOl
24
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB
25
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB + P(k)
26
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Cmbgg OmOl CMB + Ly F + P(k)
27
THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra
28
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Boom zoom Now: WMAP CMB + SDSS gals & Ly F: ∑ m i < 0.4 eV E.g., Hu & Tegmark, astro-ph/9811168, Hu, astro-ph/9904153, Hannestad et al, astro-ph/0603019 Planck CMB + LSST lensing: (∑ m i ) ~ 0.04 eV Seljak et al, astro-ph/0407372, Goobar et al, astro-ph/0602155 Spergel et al, astro-ph/0603449 Seljak et al, astro-ph/0604335 (< 0.17 eV) Future:
29
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Hata Neutrin os Cosmo progress so far
30
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Hata Neutrin os Inverted Normal Lesgourges & Pastor, astro-ph/0603494
31
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Galaxy clustering progress
32
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 Why are LRGs so useful?
33
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 SDSS sphere anim
34
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496
35
LSS Our observable universe
36
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 LSS Quasars
37
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 LSS LRG’s
38
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 LSS Common galaxies
39
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”:
40
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 LSS LRG’s Also more strongly clustered
41
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu SNOW Stockholm, May 2, 2006 LSS Why LRG’s are “just right”: 60000 LRG’s have more statistical power than 2 million regular gals (Eisenstein et al 2005)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.